

TOKIO MARINE
HCC

To Be a Good Company

Economic Scenario Generators and Negative Interest Rates

Presented at the Southwest Actuarial Forum Fall 2016

Mario DiCaro

References

Economic Scenario Generators – A Practical Guide; by the SOA and Conning, July 2016
<https://www.soa.org/Files/Research/Projects/research-2016-economic-scenario-generators.pdf>

A Quant's View of Negative Interest Rates; Global Association of Risk Professionals (GARP)
<http://www.garp.org/#!/risk-intelligence/detail/a1Z4000002vWhd>
<http://www.garp.org/#!/risk-intelligence/detail/a1Z400000033TqUEAU/quants-view-negative-interest-rates-part-II>

Everything You Need to Know About Negative Interest Rates; Wall Street Journal, June 2016
<http://www.wsj.com/articles/everything-you-need-to-know-about-negative-rates-1465906559>

WARNING: Physics Envy May be Hazardous to Your Wealth*; Andrew Lo and Mark Mueller, March 2010
http://mitsloan.mit.edu/media/Lo_PhysicsEnvy.pdf

Balance Sheets 101

Balance Sheet of Progressive (PGR) 2005

Assets		
Investments	14.3	[1]
Policyholder Money We Don't Have Yet	3.5	[2]
Other Assets	1.2	[3]
Total Assets	18.9	[4]=[1]+[2]+[3]
Liabilities & Equity		
Policyholder Money We Have	10	[5]
Debt	1.3	[6]
Other Liabilities	1.5	[7]
Total Liabilities	12.8	[8]=[5]+[6]+[7]
Shareholders' Equity	6.1	[9]=[4]-[8]
Total Liabilities + Equity	18.9	[10]=[8]+[9]

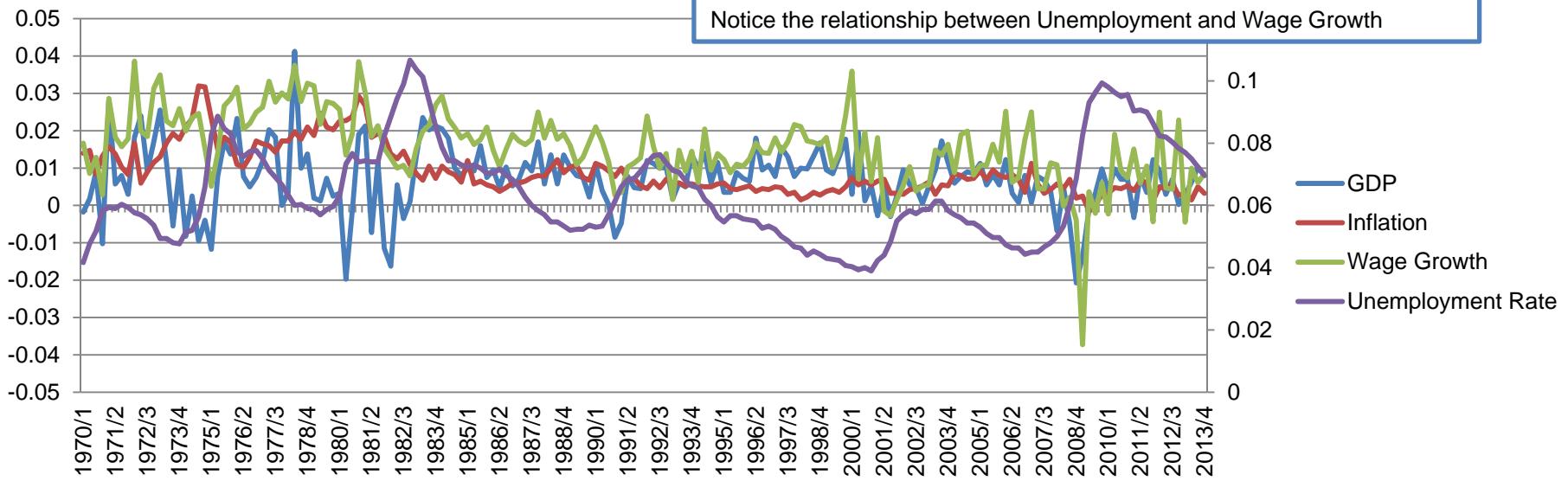
Economic variables influencing valuations

- Inflation
- Corporate bond yields
- Treasury yields
- Unemployment
- Stock indexes like S&P 500

Balance sheet items represent future cash flows.

If **inflation rises** more than considered in your reserving analysis then liabilities could turn out to be much more than thought.

If **bond yields increase** then the value of your Investments will drop. That's an interesting one though because it doesn't really affect cash flows – just market value!


Unemployment affects liabilities

Large market disruptions may affect the ability to collect Other Assets and PMWDHY.

Drops in stock indexes could impact lines of business associated with market

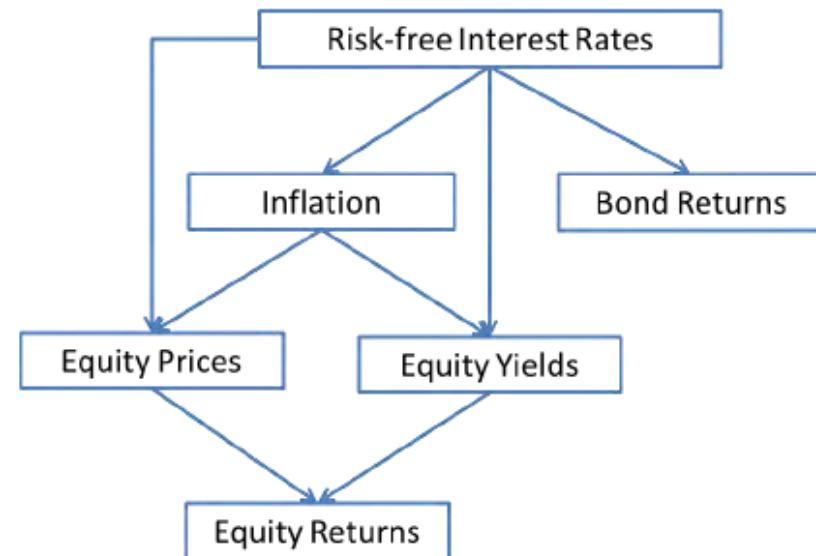
<http://www.fool.com/personal-finance/insurance/2007/01/26/understanding-an-insurers-balance-sheet.aspx>


Economic Variables

ESGs need to capture correlations and range of possible outcomes

- Will future correlations match those of the past?
- Will future movements fall within same bounds as history?
- How much will future behaviors match historical behaviors?

What is an Economic Scenario Generator?



Capturing correlations of economic variables

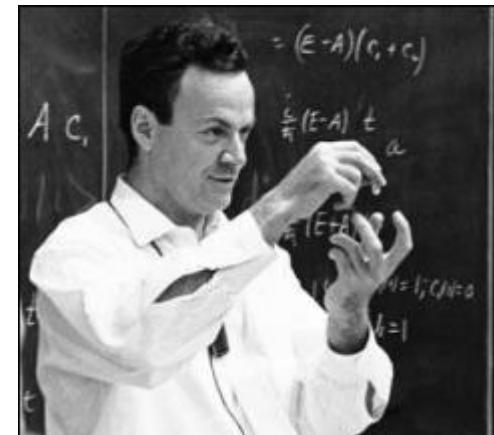
- Correlation across
 - Time
 - Variables
- Structural relationships
- Correlated sampling

US Bonds	Int'l Emg Equ'ty	US Sml Growth	US Sml Value	Int'l Dev Equ'ty	Int'l Bonds	US Lrg Value	US Lrg Growth
1	-0.049	0.012	0.023	-0.083	0.491	-0.124	-0.075
-0.049	1	0.729	0.637	0.736	-0.064	0.614	0.694
0.012	0.729	1	0.746	0.741	-0.082	0.482	0.811
0.023	0.637	0.746	1	0.659	-0.065	0.697	0.526
-0.083	0.736	0.741	0.659	1	0.100	0.714	0.800
0.491	-0.064	-0.082	-0.065	0.100	1	-0.042	-0.063
-0.124	0.614	0.482	0.697	0.714	-0.042	1	0.655
-0.075	0.694	0.811	0.526	0.800	-0.063	0.655	1

CASCADE STRUCTURE OF A HYPOTHETICAL ECONOMIC SCENARIO GENERATOR

Be realistic about what you can model

Imagine how much harder physics would be if electrons had feelings!


— Richard Feynman, speaking at a Caltech graduation ceremony

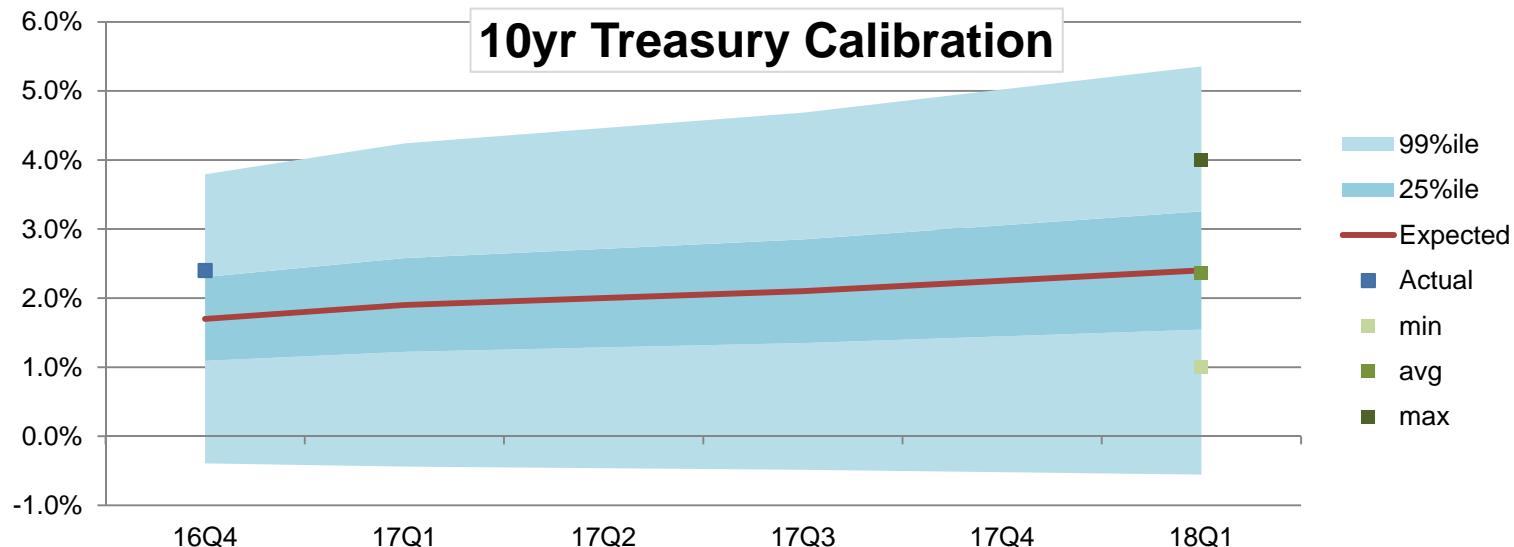
Financial economics may be a long way from physics, but this state of affairs is cause for neither castigation nor celebration—it is merely a reflection of the dynamic, non-stationary, and ultimately human aspect of economic interactions.

— Lo & Mueller

The dominant core principles of interest rate modeling of the past decades have been that (1) interest rates don't go negative; (2) there must be consistency with current bond prices; and (3) there must be parametric consistency with historical data. Clearly the first principle is gone (forever?), and there is no intuitive and convincing lower bound to replace zero. Moreover, all historical data now strikes us as irrelevant to the current paradigm in which central banks dictate the yield curve. There is no history to guide an appropriate contemporary model approach.

-Joe Pimbley, GARP

Lessons from Lo & Mueller


Taxonomy of Uncertainty

1. Complete certainty	Newtonian physics Cause and effect are structurally linked, if you know the rules then there are no surprises.
2. Risk without uncertainty	A roulette wheel The games are well defined and the odds are computable. Plenty of surprises buy you know the bounds within which they occur.
3. Fully reducible uncertainty	A covered roulette wheel The odds are set but you must figure them out by experience. More data and better methods lead closer to level 2 uncertainty.
4. Partially reducible uncertainty	A covered roulette wheel with odds that change occasionally Business acumen is needed to notice when the odds or rules change and understand their impact. Then data and methods start bringing you back towards level 2.
5. Irreducible uncertainty	Total ignorance which cannot be remedied with current capabilities. No quantifiable way to measure the outcomes of the game. More data and better methods do not reduce uncertainty. This type of problem only transitions to level 4 when there are advances in capabilities or the problem is redefined.

Economic Scenario Generators vs Natural Catastrophe Models

	ESG	Cat Model
Environmental model	Captures various global economies and correlations between variables. Based on historical data, current state of economy, and assumptions about future directions.	Models assume long-term averages or make adjustments for assumptions about current global climate. Events follow natural laws.
Scenario models	Simulated variables based on deterministic links with stochastic elements and correlated sampling. New scenarios produced with each run possibly.	Catalogues of hypothetical events which remain static in each run. Only updated with new version of model every couple years.
Loss models	Difficult to know how market values of different securities will change under different market conditions. Simple securities like Treasury Bonds are easy – but many securities are complex: options, ABS, MBS, CDO... difficult to know with precision how market values will move.	Engineering models used to measure damage to property given a simulated event. Actuarial models used for business interruption and financial costs of property damage.

Calibrate the ESG

- I find good graphic overlays to help with calibration
- Compare actual to projection
- Get some external views
 - Bloomberg, investment manager, finance department
 - Variables like spreads, stock indexes, inflation, bond yields

Calibration steps:

- Choose your targets
- Run the model to see where current projections are
- Change the model inputs or outputs
 - Changing inputs requires understanding of parameters.
 - Changing outputs requires changing probabilities on generated scenarios.

How do you decide on an ESG?

Same way you pick a car

- Price
 - How much do you have for this expense?
 - Have you researched *at all* what benefit you need from it in order to justify the cost?
- Ease of use
 - Sometimes this is independent of cost – the more expensive one may be more difficult to use.
- Will anyone else be using it?
- How will you maintain it?
- Who do you need to impress?
- Can it do what you need it to?
- Is it easy to modify? Too easy to modify?
- Do you like dealing with the people at the dealership?
 - Do you trust them?
 - Are they responsive?

History of negative interest rates

Photo of Sidney Homer by George E. Joseph

Sidney Homer wrote the book “A History of Interest Rates” in 1963.

The book covers all recorded history of interest rates – which goes back to 3000 B.C.! It almost seems like people started writing in order to keep track of what they owed each other.

I highly recommend reading at least the introduction, pages 1-13.

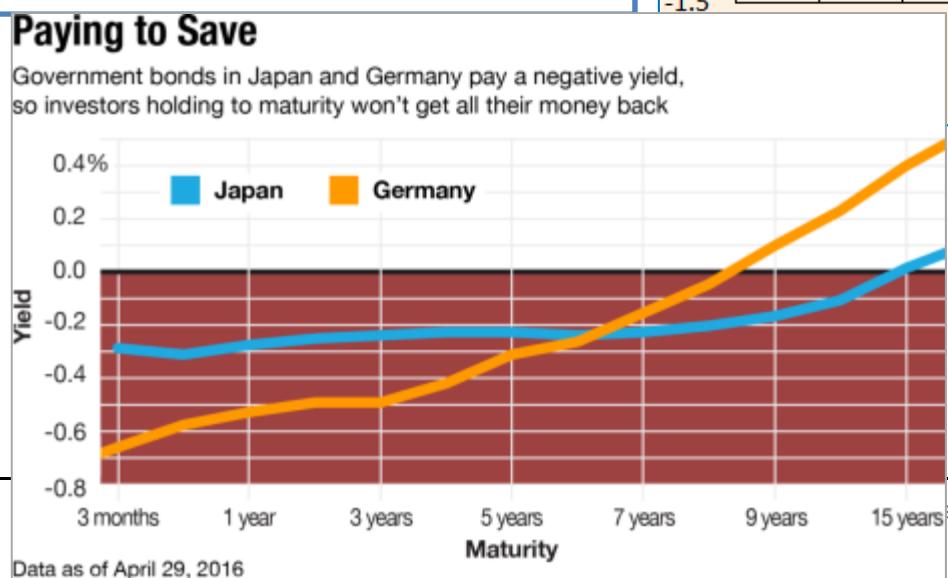
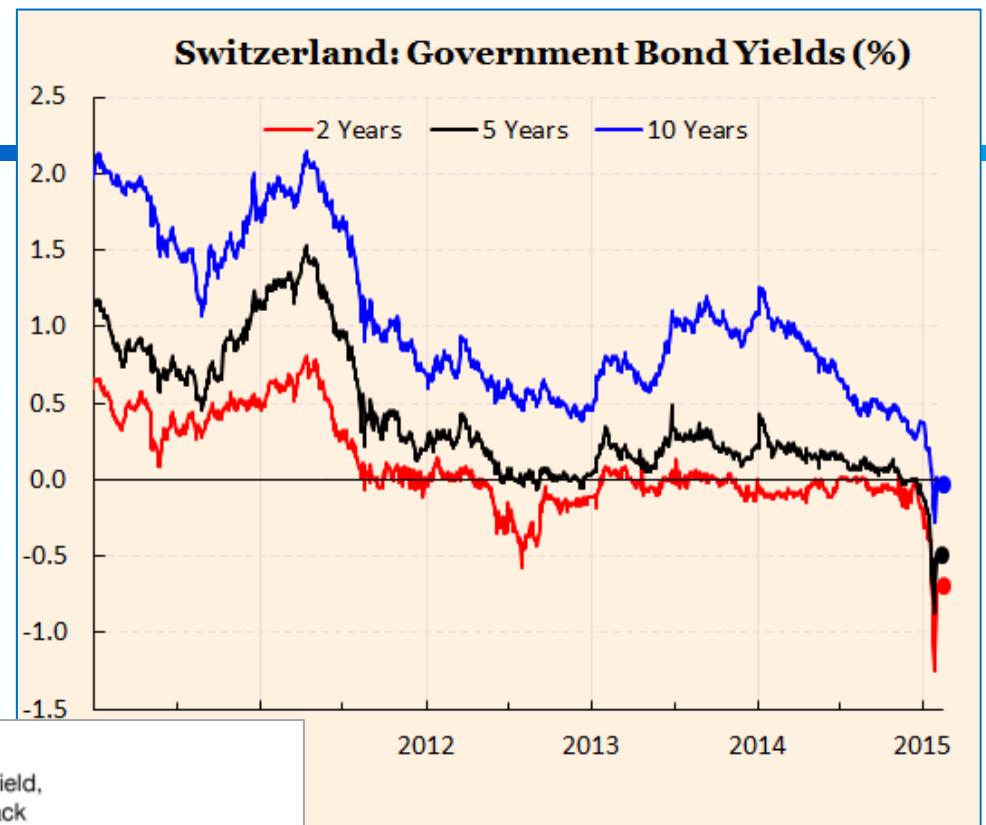
So, what is the history of negative interest rates?

None – never before our modern times have they existed. Why? Central banks have unprecedented control over currency.

Table 1

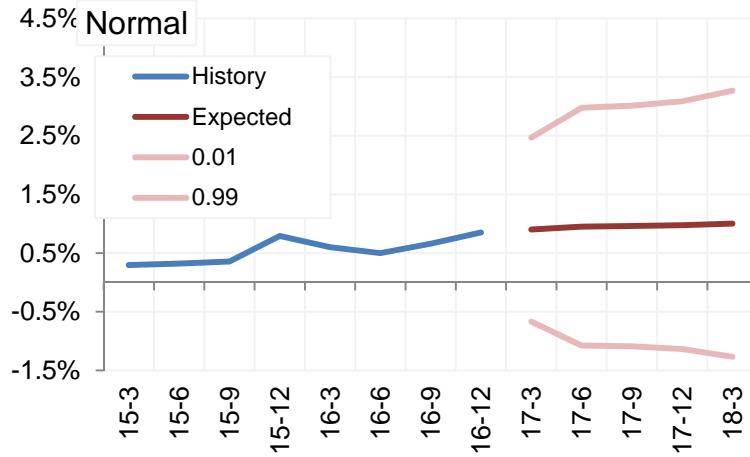
Summary of Mesopotamian Interest Rates: 3000–400 B.C.

- Banks were largely private institutions
- Lending to kings to carry out wars as often as farmers to plant crops
- Lending was also run by the religious institutions
- Silver and Grain were used as currency
- What does that have to do with modeling interest rates today?

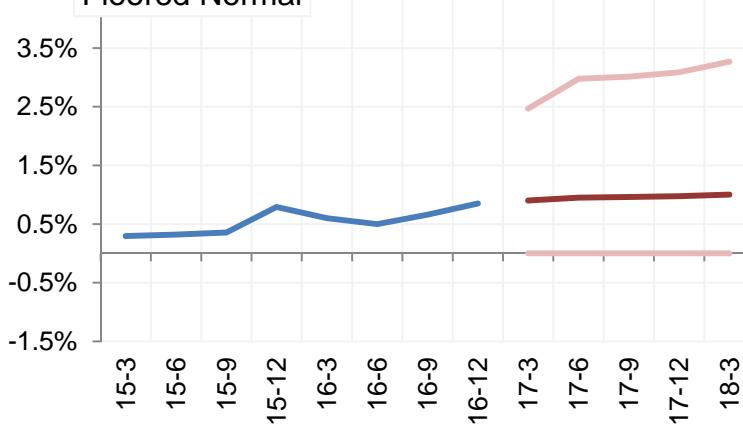


Dates B.C.	Normal Rates, %		Legal Maxima, %	
	On grain	On silver	On grain	On silver
Sumer 3000–1900	33 $\frac{1}{3}$	20–25		
Babylonia 1900–732	20–33 $\frac{1}{3}$	10–25	33 $\frac{1}{3}$	20
732–625	20–33 $\frac{1}{3}$	10–20	33 $\frac{1}{3}$	20
625–539	2–20	10–20	20	20
Fifth–fourth centuries		40 (?)		
Assyria Ninth–seventh centuries	30–50	20–40		
Persia Sixth century	40	40		

Real Estate Loans

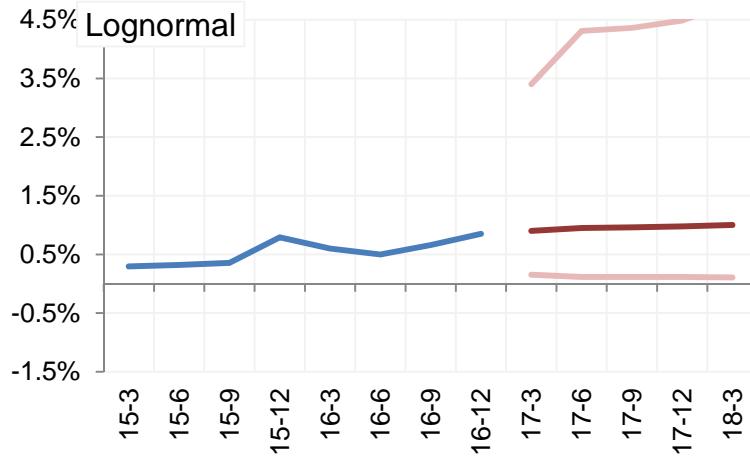
Fifth century B.C.	City property, at least Country property	8%	(59)
Fourth century B.C.	City property, at least Country property	8	(59)
	Town mortgages	8–12	(59)
400 B.C.	Mortgage loans at	8	(64)
369 B.C.	A man borrowed on multiple dwelling at	16–18	(62)
346 B.C.	Horoi pledge, mill and slaves at	16	(74)
305 B.C.	5000 drachmas, on horoi at	12	(72)
Third century B.C.		10	(73)
300 B.C.	Horoi pledge on extensive land at	10	(75)
	Horoi pledge on home, roof, and land at	10	(72)
210–195 B.C.	Land in Thera pledged at	7	(76)
Second century B.C.	Gift to Aegiale to be loaned on land at	10	(76)
160 B.C.	Gift to Delphi to be loaned on land worth at least twice the loan, 5-yr. term	6 $\frac{2}{3}$	(76)

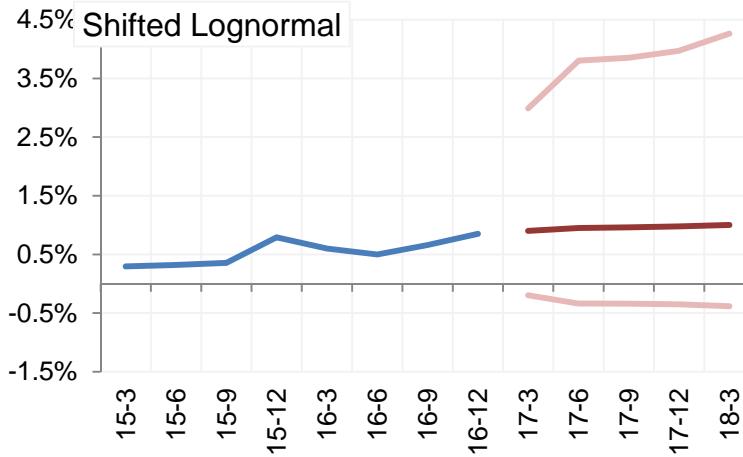

ESG projections didn't deal well with low and negative interest rates

- In 2012 ESG's did not deal well with low and negative rates
- They either
 - Ignored 0 as a lower bound altogether
 - Floored rates at 0
- Why?
 - Historical data used to build, design, calibrate and test ESGs had no negative interest rates



ESG adjustments for negative rate possibilities


1yr Treasury Yields


4.5% Floored Normal

4.5% Lognormal

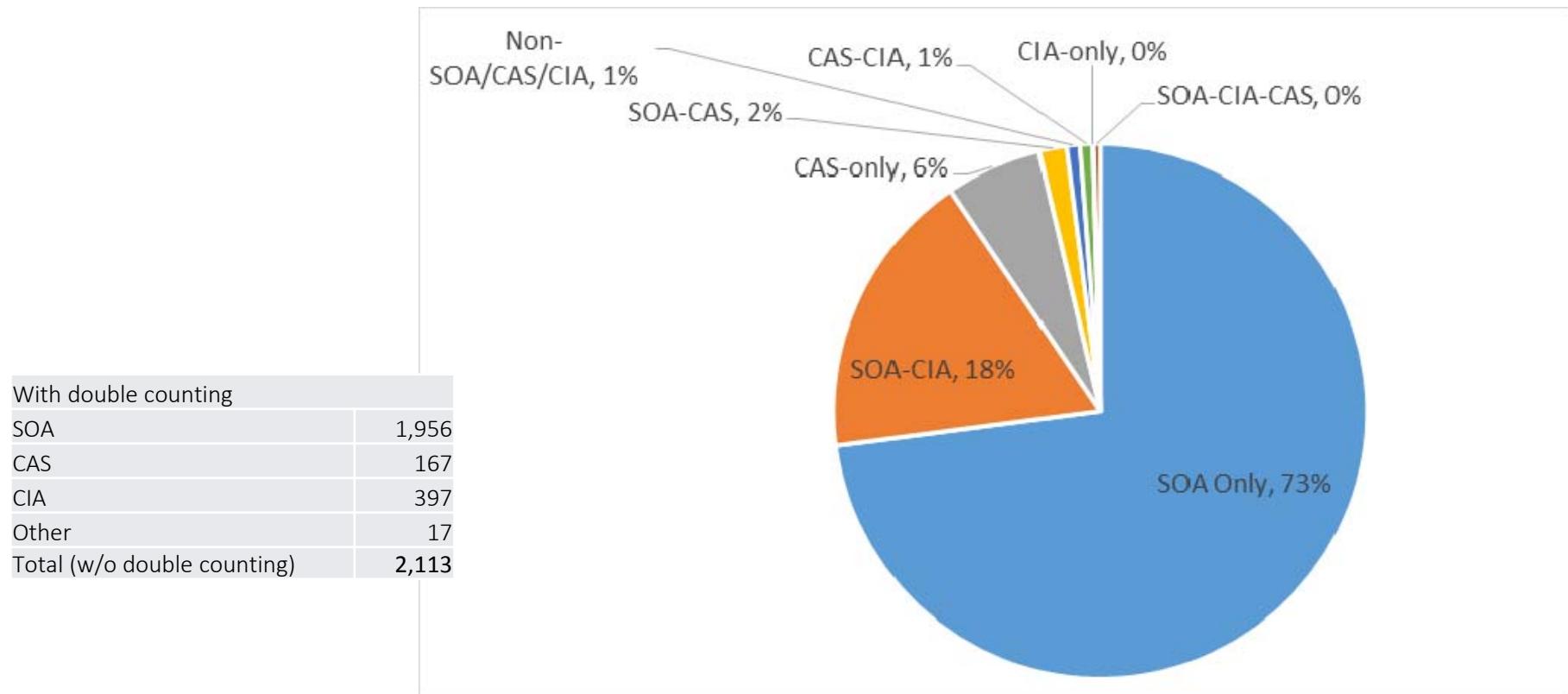
4.5% Shifted Lognormal

The Who and What of the Joint Risk Management Section (JRMS)

What is an SOA section?

- The Society of Actuaries sponsors professional interest groups, known as sections. Each section focuses on common issues related to an area of practice or special interest. Members of the SOA and fellow industry professionals can join one or more sections. The SOA has 20 sections dedicated to bringing their members important and relevant information about their area of interest through a variety of channels.
- Each special interest section provides members:
- Premier access to the section newsletter
- Professional development opportunities
- Networking opportunities online and at SOA events
- Volunteer opportunities within a section council or section sponsored activity
- Discounts to section sponsored events

JRMS Mission, Vision and Priority


- Mission/Vision

- The Society of Actuaries (SOA), Casualty Actuarial Society (CAS) and Canadian Institute of Actuaries (CIA) jointly sponsor the Risk Management Section. The purpose of the Risk Management Section is to **Further the education and research in the area of risk management and establish leading risk management techniques.** These efforts should help to **increase the profile of the actuarial profession as being leaders in this field** and should be rigorous and based on sound principles such that the resulting techniques are broadly transportable across disciplines and industries.

- Objectives:

- Increase level of communication and interaction with Section members.
- Expand ERM educational opportunities for Section members and sponsoring organizations.
- Continue to foster risk management research.
- Support promoting the Actuarial profession as risk managers.

JRMS made of three partnering associations

JRMS council, 10-2016/09-2017

Name	Role	Association	Term Expires
Thomas Weist	CHAIR	CAS	2018
Frank Reynolds	Vice Chair	SOA, CIA	2017
Hugo Leclerc	Secretary	SOA, CIA	2017
C. Ian Genno	Treasurer, Webcast Coordinator	SOA, CIA	2018
Mario DiCaro	Council Member	CAS	2019
Robert He	Council Member, Newsletter Editor	SOA	2017
Rahim Hirji	Council Member	SOA, CIA	2019
Yangyan Hu	Council Member, Webcast Coordinator	SOA	2018
Cheryl (Baoyan) Liu	Newsletter Editor, Webcast Coordinator	SOA	2017
Leonard Mangini	Council Member	SOA	2019
Mark Mennemeyer	Council Member, L&A Symposium Rep.	SOA	2018
Fei Xie	Council Member	SOA	2019

JRMS Achievements

- Meeting sessions
- Webcasts
- Newsletters
- Networking events
- Research
- E-book library & Call for essays in 2016 on Cyber

JRMS Newsletter

- #35 April issue
 - What is a CAT model
 - GLWB Rider for FIA's
 - Corporate pension risk management
 - Model vetting
 - Risk Implication of Unemployment and Underemployment
 - Global risk report
 - Annual emerging risk survey
- #36 August
 - ERM in the US Life and Annuity Industry: 2015 Survey-Summary Report
 - Risk Aggregation and Diversification
 - IAA Risk Book
 - A Discussion of Canadian and U.S. Capital Adequacy Requirements
 - ORSA Experience: A consultant's view
 - Recent Publications in Risk management

E-book library

- E-book library through EBSCO
 - Borrow, read and return books
 - E-book only to read on computers, tablets or any devices
 - <https://www.soa.org/professional-interests/joint-risk-management/new-jrm-benefit-access-e-library.aspx>

Joint Risk Management Section

The Society of Actuaries (SOA), Casualty Actuarial Society (CAS) and Canadian Institute of Actuaries (CIA) jointly sponsor the Risk Management Section. The purpose of the Risk Management Section is to further the education and research in the area of risk management and establish leading risk management techniques. These efforts should help to increase the profile of the actuarial profession as being leaders in this field and should be rigorous and based on sound principles such that the resulting techniques are broadly transportable across disciplines and industries. [Objectives](#)

[SHARE](#)

Latest News

[Call for Essays – Cybersecurity: Impact on Insurance Business and Operations](#)

[Research Report on ORSA Process Implementation](#)

[FSA Curriculum RFP: Corporate Finance and ERM](#)

[The How to Review an ORSA e-book is now available](#)

[Access EBSCO Risk Management E-library](#)

Upcoming Events

[Professionalism in ERM Practice Webcast - Aug. 23](#)

[Valuation Actuary Symposium - Aug. 29 - 30](#)

[SOA Annual Meeting - Oct. 23 - 26](#)

[SOA Calendar](#)

Publications

[Risk Management Newsletter-April 2016](#)
[English](#) | [French](#)

[Risk Management Newsletter-Jan 2016](#)
[English Version](#) | [French Version](#)

[Risk Management Newsletter-Aug. 2015](#)
[English Version](#) | [French Version](#)

Past Issues

[Down but not Out: A Cost of Capital Approach to Fair Value Risk Margins](#)

Essays and White Papers

[Risk Management: Part Four-Incentive Compensation—The Critical Blind Spot in ERM Today](#)

Additional Information

[JOIN A SECTION](#)

[SECTION OVERVIEW](#)

[CONNECT](#)

Resources

[Section Leadership](#)
[2016](#) | [2015](#)

[Papers, Presentations & Resources](#)

[Links of Interest](#)

Research

[Request For Proposal - Enterprise Risk Management Stakeholder Buy-In](#)

[Research Studies—Proposal Requests - Parameter Uncertainty](#)

[Country Risk Officer](#)

[Risk Management Research Projects](#)

[CAS Research Resources](#)

[Survey Reports](#)

QUESTIONS?