

Southwest Actuarial Forum

Exploring Advanced Analytics Solutions in Pricing

December 2016

Brockman & Wright

GLMs in auto risk models

GLMs in demand models

Offline optimization (GLM based)

Real time optimization

More data enrichment

GLMs

1990

1995

2000

2005

2010

2016

Other “Non-GLM” statistical models

Distributed Big Data storage/ Hadoop

Hyper scale parallel computing

Data visualisation tools

NoSQL databases

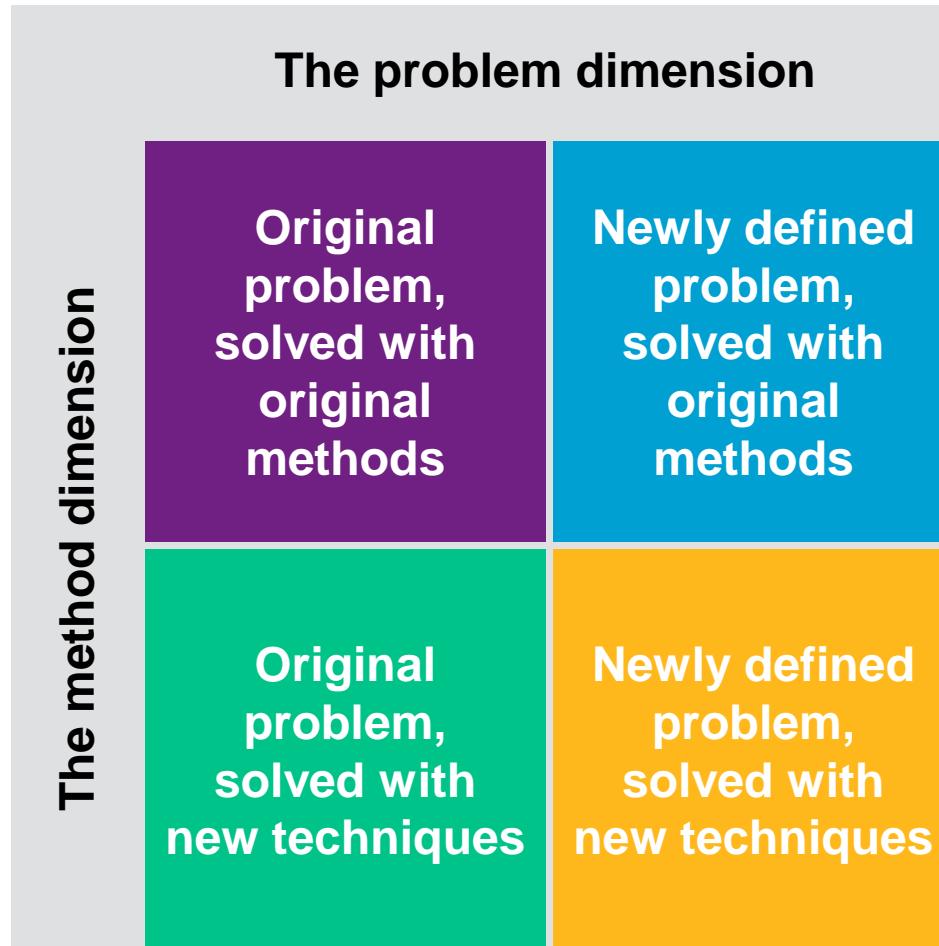
Machine learning

Free software environments, analytics libraries

Data stream and real-time processing supporting IoT

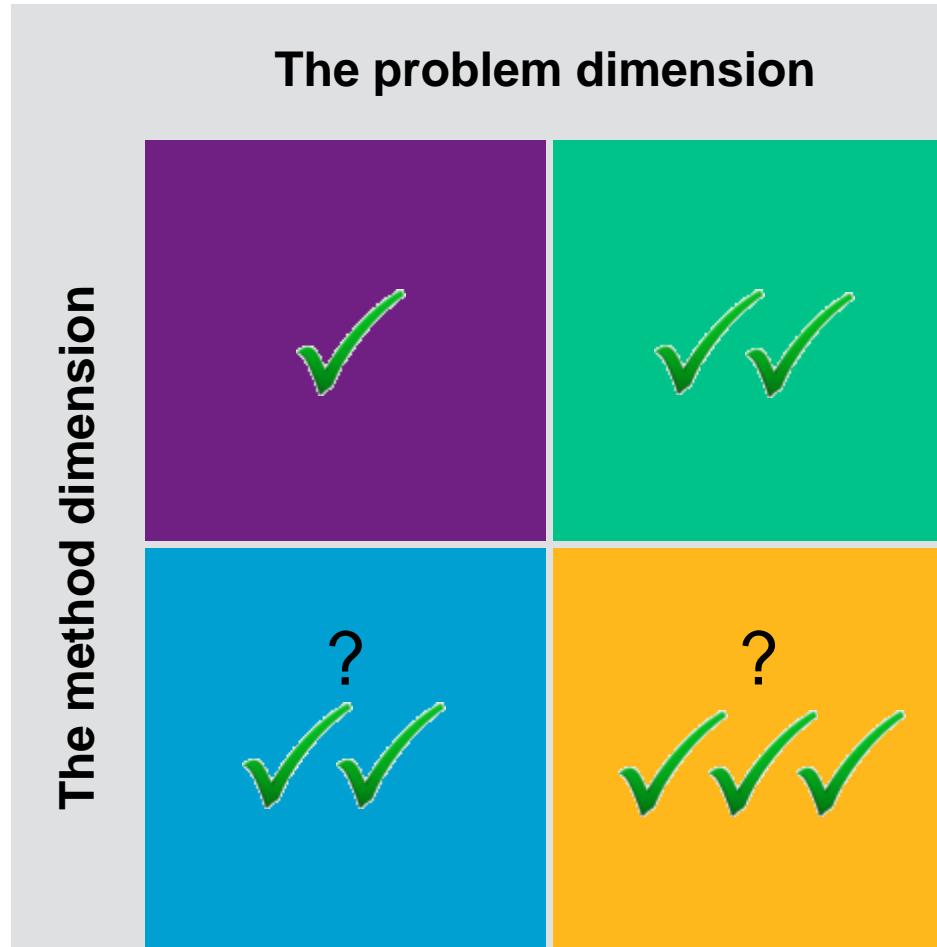
Integrated environments and services

A 2 x 2

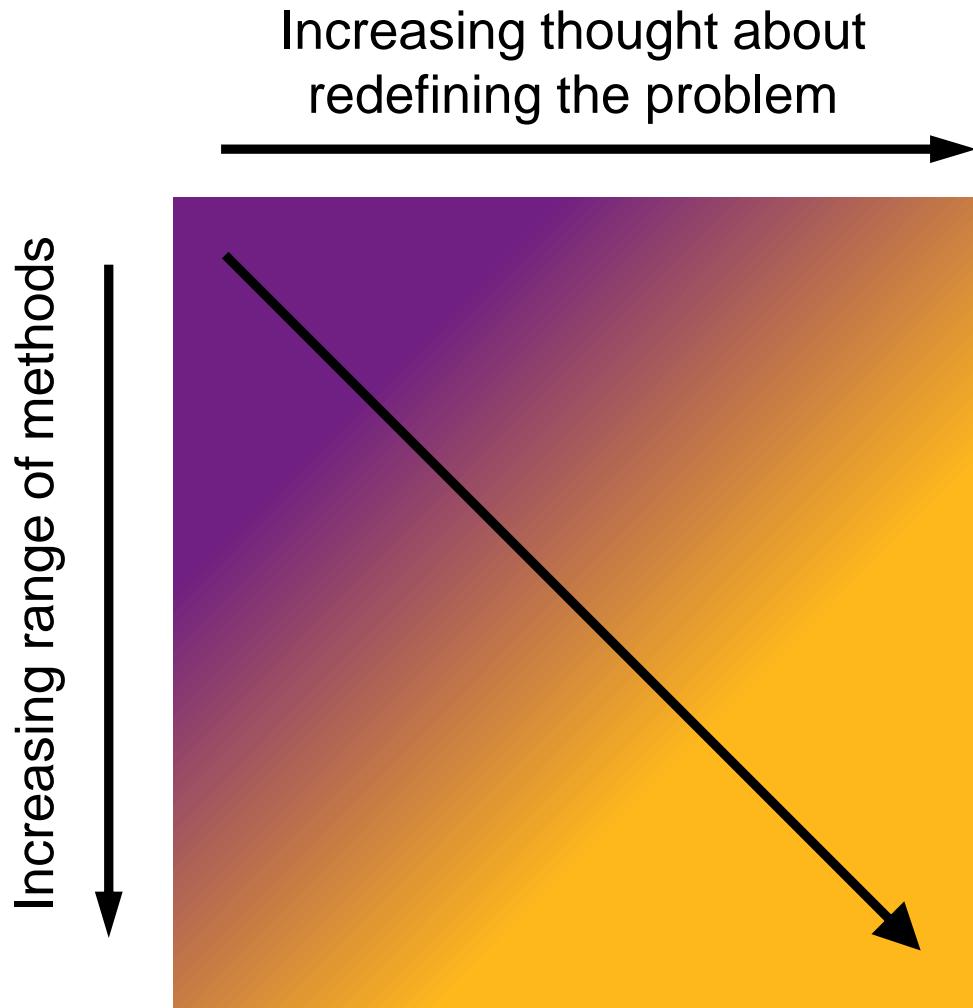


A 2 x 2

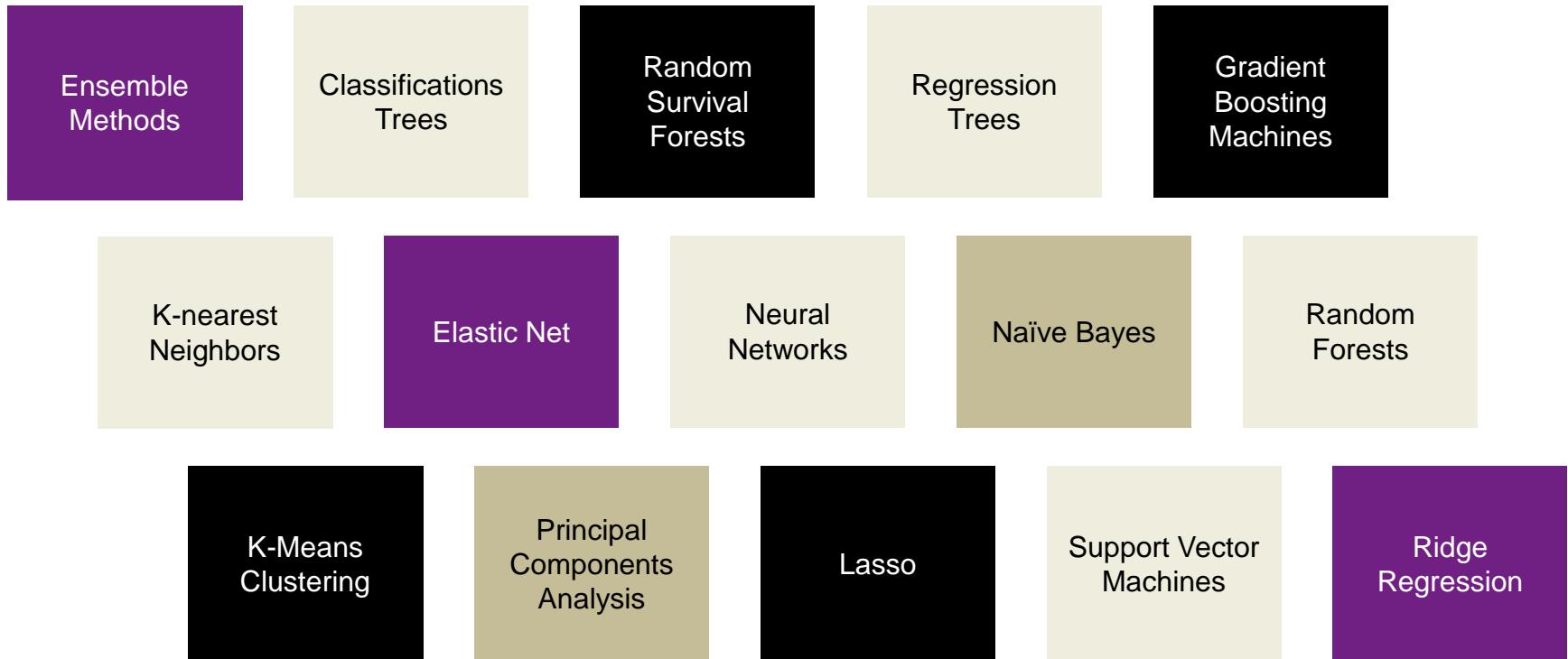
Where might the value be?



It's not really a 2 x 2, more a continuous spectrum



What are these other methods?



Kaggle

Welcome to Kaggle's data science competitions.

[How to Data Science!](#)
[Tutorial on the Movie competition](#)

[Want to learn from other's code?](#)
[Kaggle's top rated scripts](#)

Download
Choose a competition & download the training data.

Build
Build a model using whatever methods and tools you prefer.

Submit
Upload your predictions. Kaggle scores your solution and shows your score on the leaderboard.

Active Competitions

All Competitions	Active Competitions
	State Farm Distracted Driver Detection Can computer vision spot distracted drivers? 3 months 239 teams 110 scripts 360,000
	Santander Customer Satisfaction Which customers are happy customers? 10 days 2064 teams 2470 scripts 840,000
	Home Depot Product Search Relevance Predict the relevance of search results on homedepot.com 11 days 2044 teams 2450 scripts 840,000
	BNP Paribas Cardif Claims Management Can you predict BNP Paribas Cardif's claim management process? 4.4 days 2067 teams 1869 scripts 810,000
	2016 US Election Explore data related to the 2016 US Election 229 scripts 900+ downloads
	2013 American Community Survey Find insights in the 2013 American Community Survey 2007 scripts 3500+ downloads
	World Development Indicators Explore country development indicators from around the world 347 scripts 1840+ downloads

Kaggle Rankings

Kaggle users are allocated points for their performance in competitions. This page shows the current global ranking. For more information on how we calculate points, please visit the [user ranking wiki page](#).

Rank	Points	User	Competitions	Location
1st	161,171	 Gilberto Titericz 96 competitions Brazil		
2nd	109,902	 Μαρίος Μιχαληλής 121 competitions Athens, Greece		
3rd	103,937	 Stanislav Semenov 37 competitions Moscow, Russia		
4th	101,131	 Owen 42 competitions New York, United States		
5th	100,000	 Kohai 12 competitions Tokyo, Japan		
6th	123,091	 Alexander Guschin 21 competitions Moscow, Russia		
7th	122,912	 Abhishek 31 competitions Berlin, Germany		
8th	119,001	 Loustegos 43 competitions Belo Horizonte, Brazil		
9th	114,034	 Cardel 26 competitions Brazil		
10th	126,299	 Gert 24 competitions The Netherlands		
11th	107,000	 Y 30 competitions South Korea		
12th	100,224	 Mike Kim 40 competitions West Jefferson, NC, United States		
13th	100,176	 clustifier 36 competitions Ireland		
14th	99,000	 Mario Filho 17 competitions São Paulo, Brazil		
15th	97,813	 utility 18 competitions Moscow, Russian Federation		

Kaggle winning methods (January 2015 to February 2016)

- **Gradient Boosted Machines** was most successful technique across the board
- **Feature Creation/Selection** was noted as biggest contributor to success
 - The nature of Kaggle and the sharing of benchmarks means most competitors use the same algorithms – thus the key differentiator is the improvement gained from good feature creation/selection

Count of method placing “top 3” in competition (for which data was available)

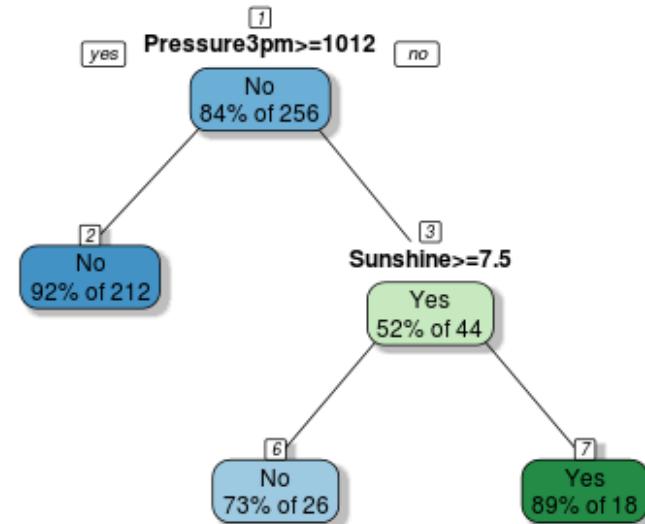
Competition subject	Support Vector Machine	Gradient Boosted Machine	Neural Network	Mixed Method Ensemble	Random Forest	Total
All	1	19	10	10	1	41
Insurance	-	3	-	4	-	7

An overview of Gradient Boosted Machines

- **Boosting** is where models are successively trained on the **residuals** of the previous model
- At each iteration, the model is updated by adding only a fraction (λ) of the new model
- Each iteration performed on a random sample of data points to reduce over-fitting to the training data
- The overall prediction is given by

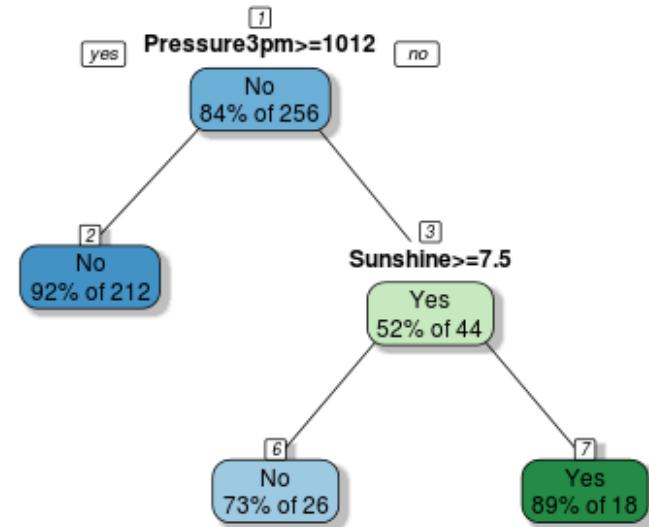
$$f(x) = \lambda \sum_{n=1}^N f_n(x)$$

- Base models are usually Decision Trees, but could use other model forms (eg GLMs)
- There are numerous parameters to decide (including λ and the number of trees – this is done via cross validation)



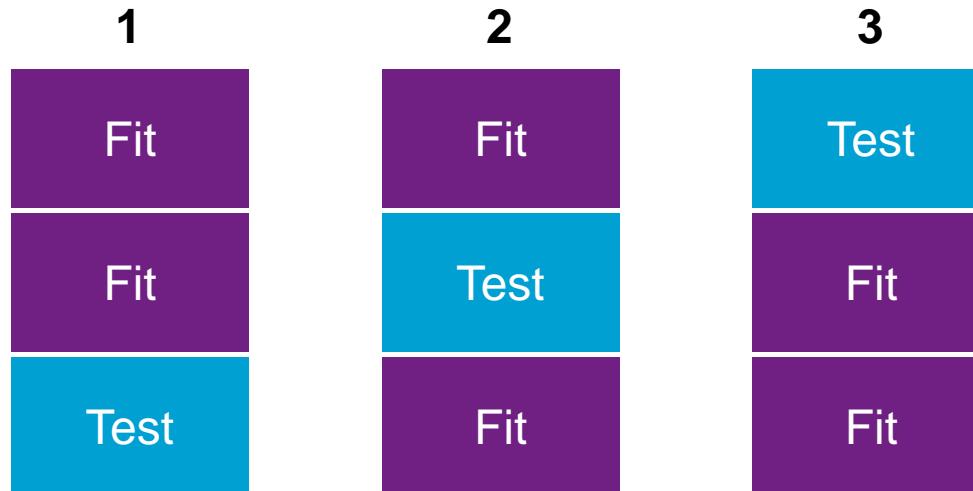
Four main assumptions

- **Learning rate / “shrinkage”**
 - Amount by which the old model predictions are varied for the next model iteration
 - New model =
Old + (Prediction x Learning rate)
- **Interaction depth**
 - Number of splits allowed on each tree (or the number of terminal nodes – 1)
- **Number of trees** (iterations) allowed
- **Bag fraction**
 - Trees are fitted to a subset of the data (the bag fraction) on a randomized basis
 - Additional noise-reduction can be achieved by using a random subset of the available factors at each iteration



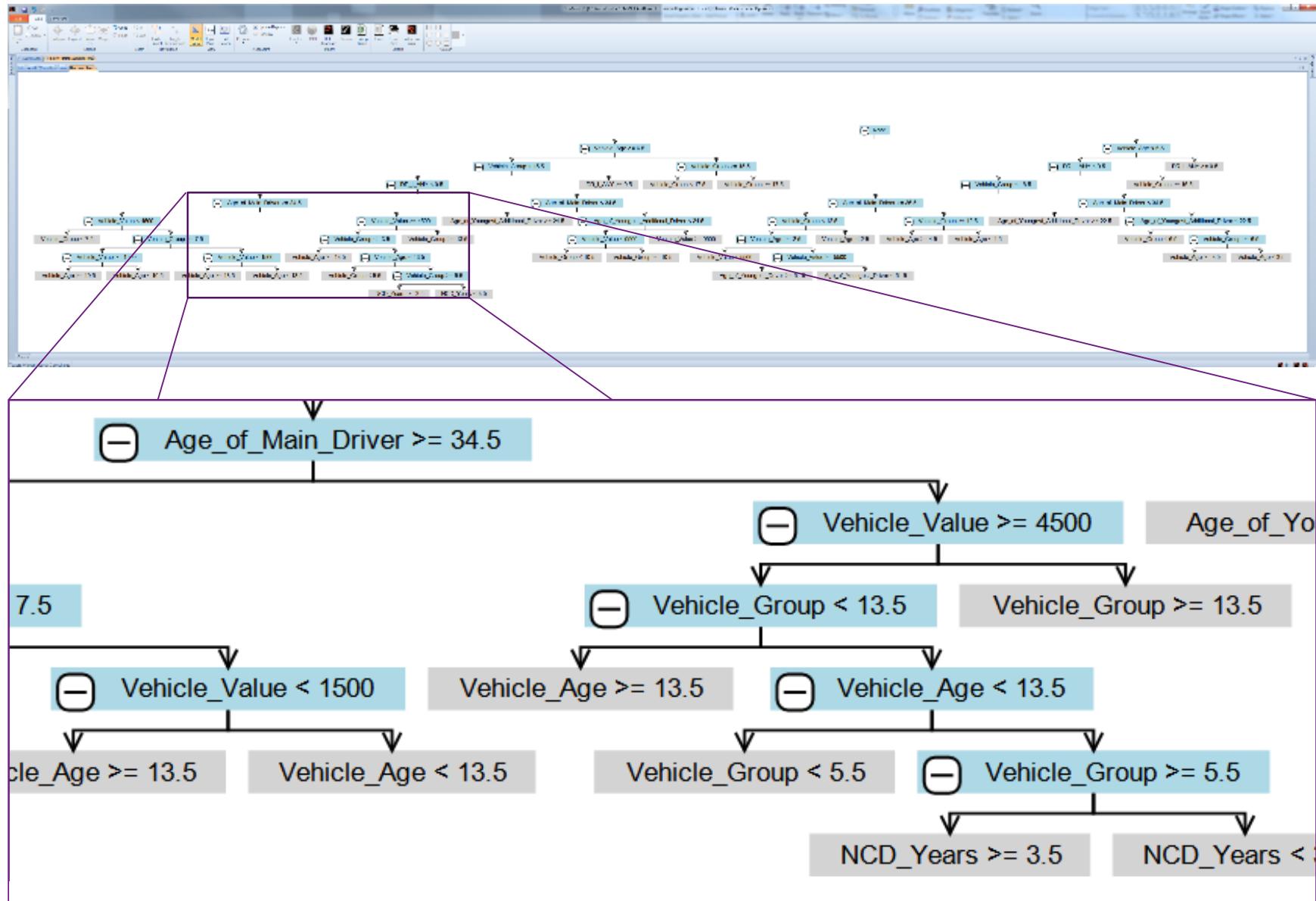
Calibrating the assumptions

- n-fold cross validation used to develop the interaction depth and learning rate assumptions
 - Eg for 3-fold validation, split into 3, fit on purple, test on blue parts, take average

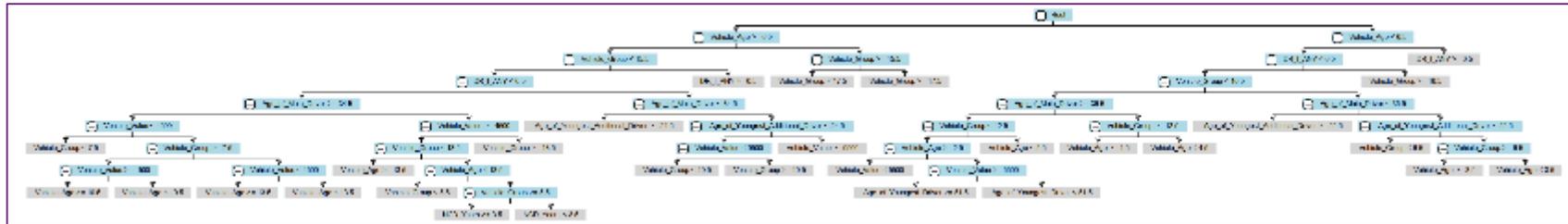


- Resulting plots can be used to determine the optimal assumption choice
 - Including how many trees to run

What does the result look like?

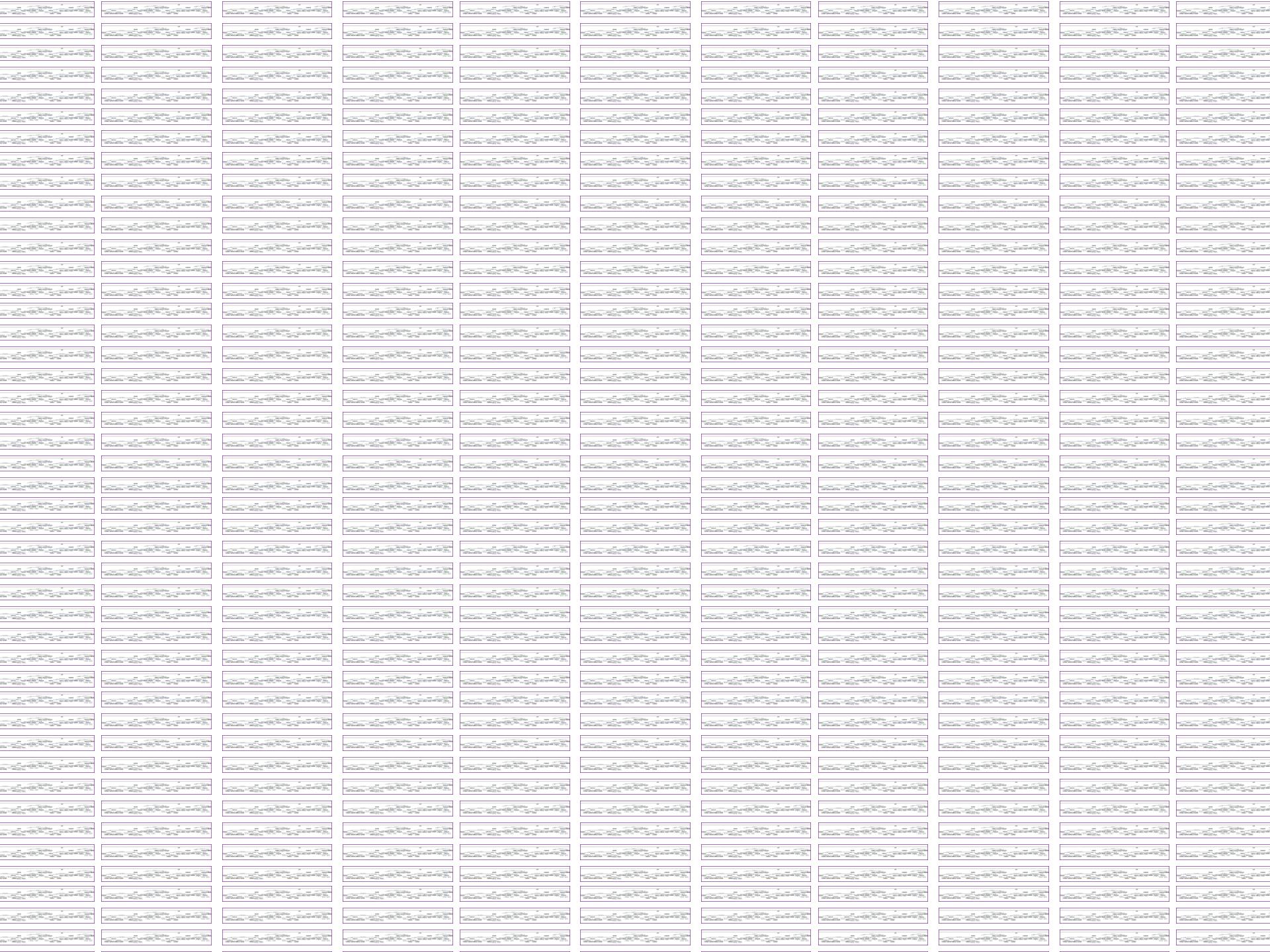


What does the result look like?



What does the result look like?

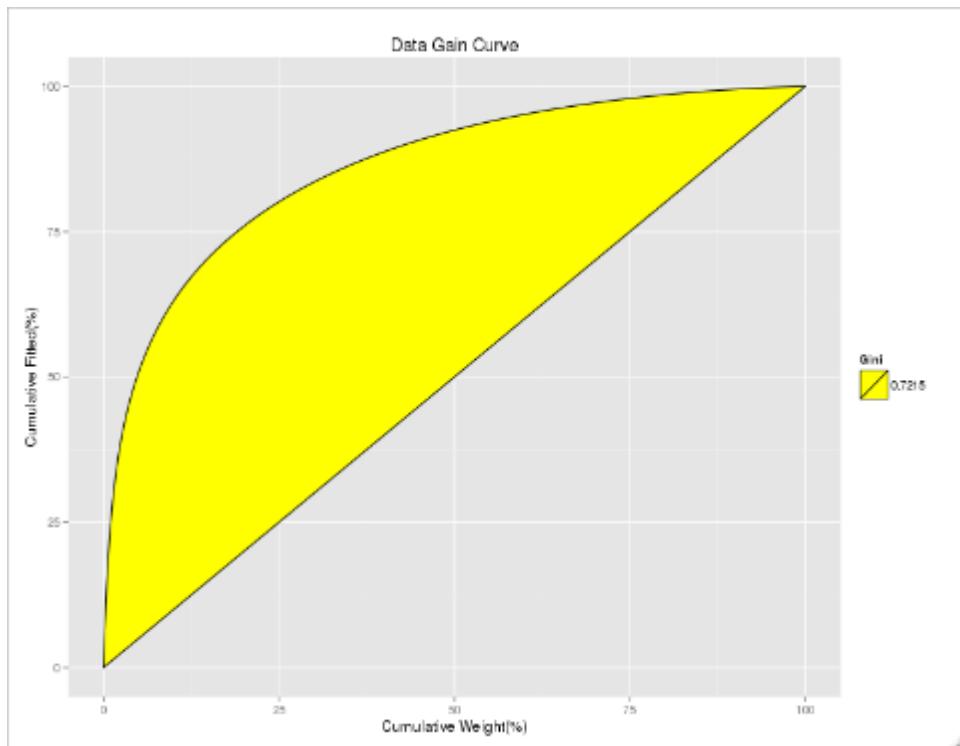
What does the result look like?



Three (and a half) interesting questions

1. Does the model add value?
2. What does the model mean?
 - Do we even need to know?
3. How can we use the model?

Gini curves



- Rank hold out observations by their **fitted values** (high to low)
- Plot **cumulative response** by cumulative exposure
- A **better model** will explain a **higher proportion of the response** with a **lower proportion of exposure**
- ...and will give a **higher Gini coefficient** (yellow area)

Example results

Model	Gini
GLM	0.327

Example results

Model	Gini
GLM	0.327
GBM	0.332

Example results

Model	Gini	Gini improvement
GLM	0.327	0.0%
GBM	0.332	1.7%

Example results

Model	Gini	Gini improvement	Gini rank
GLM	0.327	0.0%	2
GBM	0.332	1.7%	1

Example results

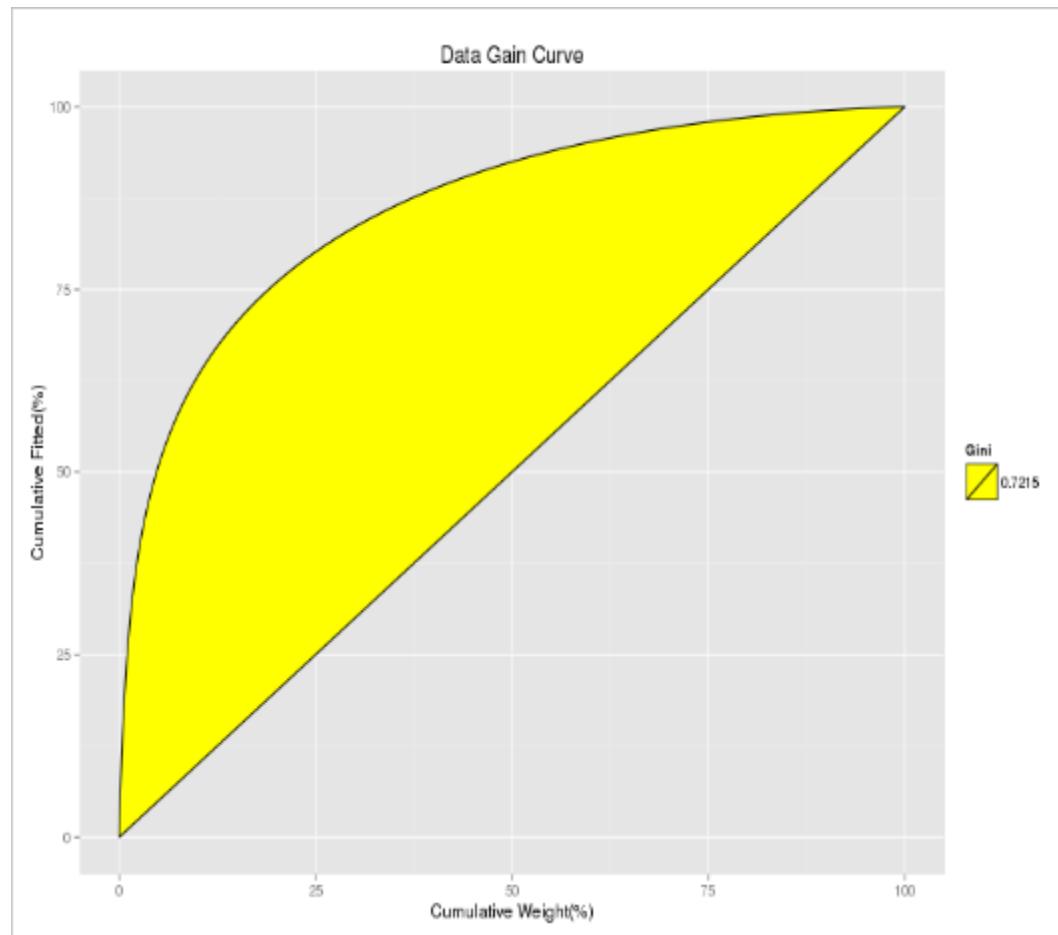
Model	Gini	Gini improvement	Gini rank
GLM (main factor removed)	0.318	-2.6%	4
GLM (minor factor removed)	0.322	-1.3%	3
GLM	0.327	0.0%	2
GBM	0.332	1.7%	1

But...

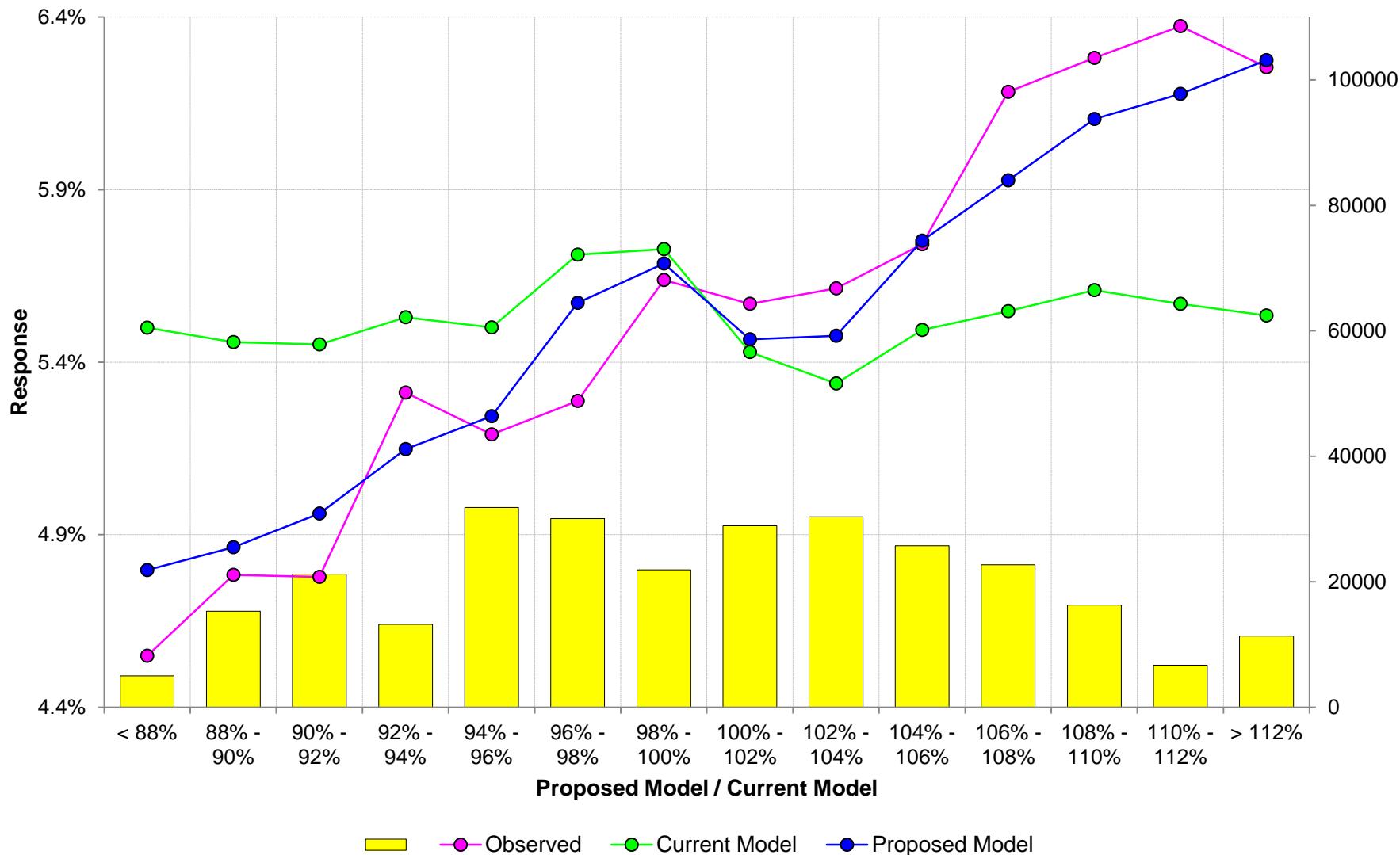
- Think of a model...
- Multiply it by 123
- Square it
- Add 74½ billion

But...

- Think of a model...
- Multiply it by 123
- Square it
- Add 74½ billion
- ...and you get the same Gini coefficient!

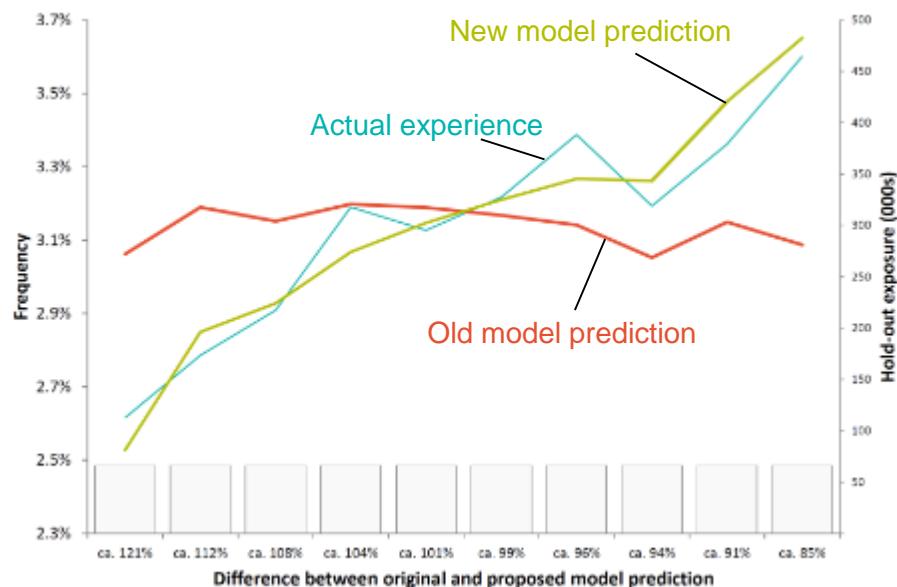


Double lift chart



Financial value estimate

- Errors in insurance pricing are not symmetrical
- Simplified model can approximate this and provide a robust sense-check on value created given
 - an assumed elasticity
 - an assumed cap/floor approach



Simple formula

Old/New	New premium	Expected volume	Actual claims	Increased profit
121%	P_1	V_1	C_1	X_1
...	P_2	V_2	C_2	X_2
...
...	P_{99}	V_{99}	C_{99}	X_{99}
85%	P_{100}	V_{100}	C_{100}	X_{100}
Value created				\$ X

Financial value estimate

Model	Gini	Gini improvement	Gini rank	Loss ratio @ elasticity 6	Loss ratio rank	Loss ratio @ elasticity 2	Loss ratio rank
GLM (main factor removed)	0.318	-2.6%	4	-0.9%	4	-0.4%	4
GLM (minor factor removed)	0.322	-1.3%	3	-0.4%	3	-0.2%	3
GLM	0.327	0.0%	2	0.0%	2	0.0%	2
GBM	0.332	1.7%	1	2.8%	1	0.6%	1

Financial value estimate

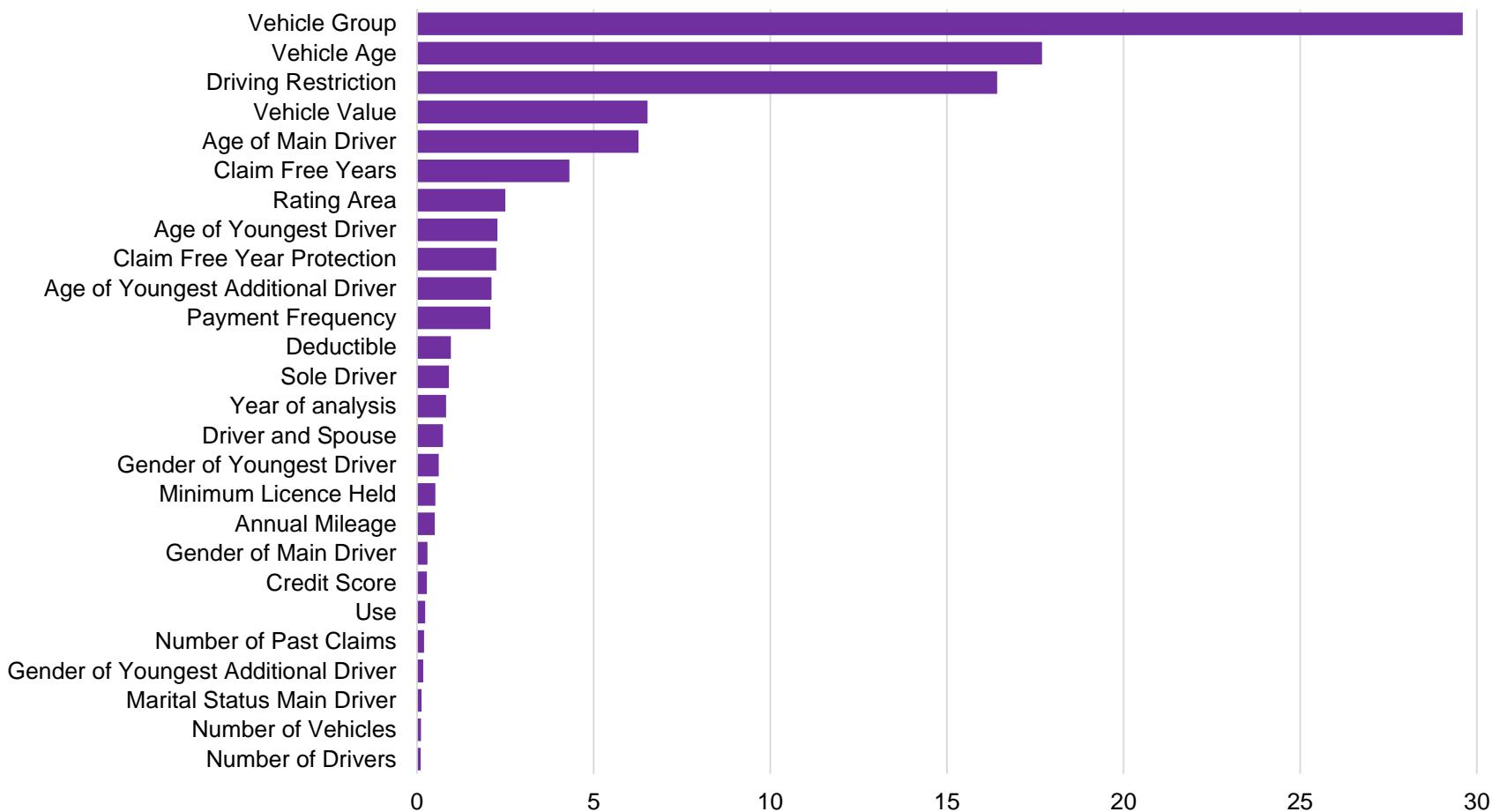
Model	Gini	Gini improvement	Gini rank	Loss ratio @ elasticity 6	Loss ratio rank	Loss ratio @ elasticity 2	Loss ratio rank
GLM (main factor removed)	0.318	-2.6%	5	-0.9%	5	-0.4%	5
GLM (minor factor removed)	0.322	-1.3%	4	-0.4%	4	-0.2%	4
GLM	0.327	0.0%	3	0.0%	3	0.0%	3
GBM	0.332	1.7%	2	2.8%	1	0.6%	2
Ensemble of GBM & GLM	0.338	3.4%	1	2.7%	2	0.7%	1

Three (and a half) interesting questions

1. Does the model add value?
2. What does the model mean?
 - Do we even need to know?
3. How can we use the model?

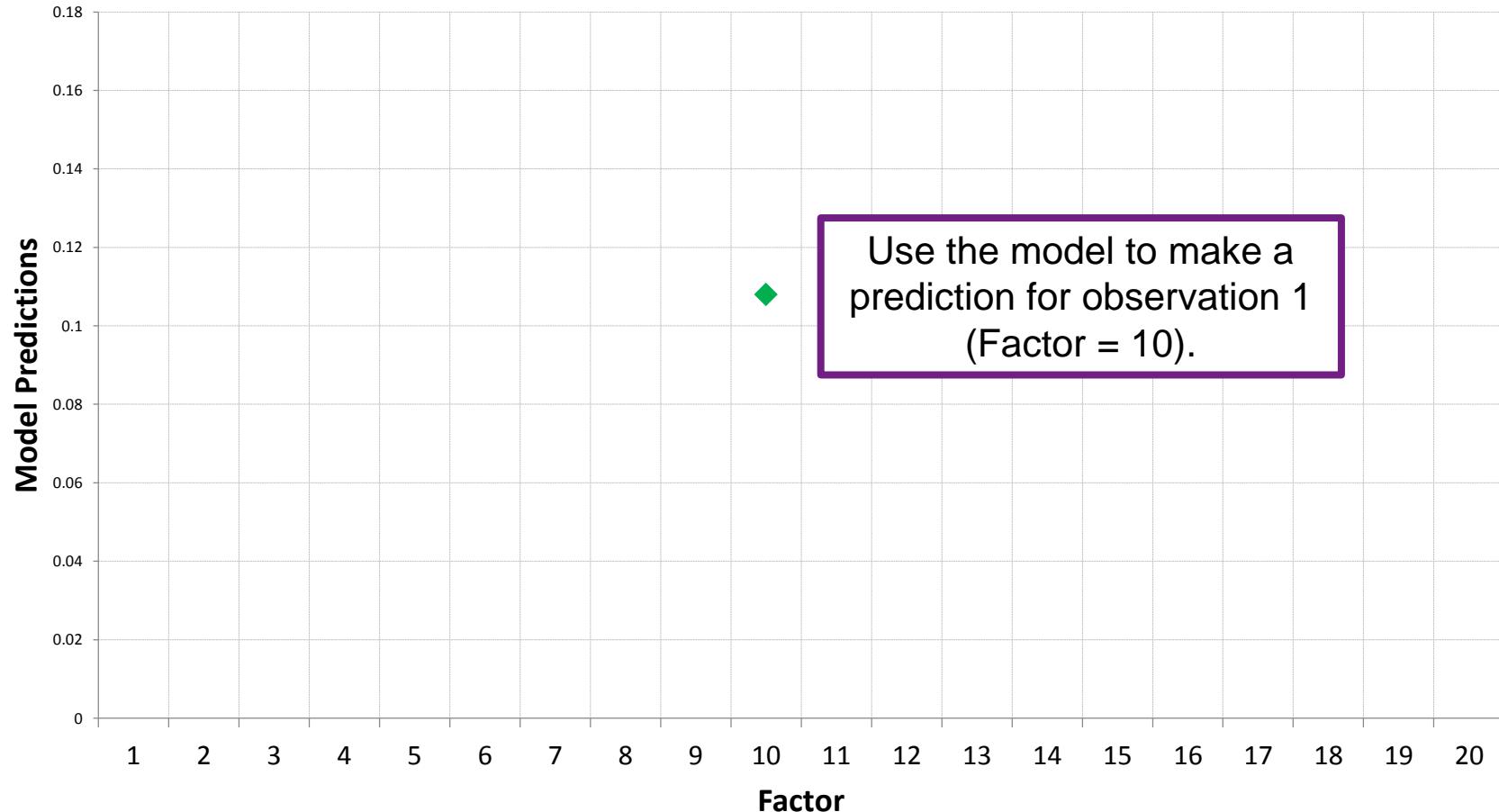
Factor importance – relative influence

The relative influence of a factor can be measured as the total reduction in error attributable to splits by that factor, across all trees in the GBM



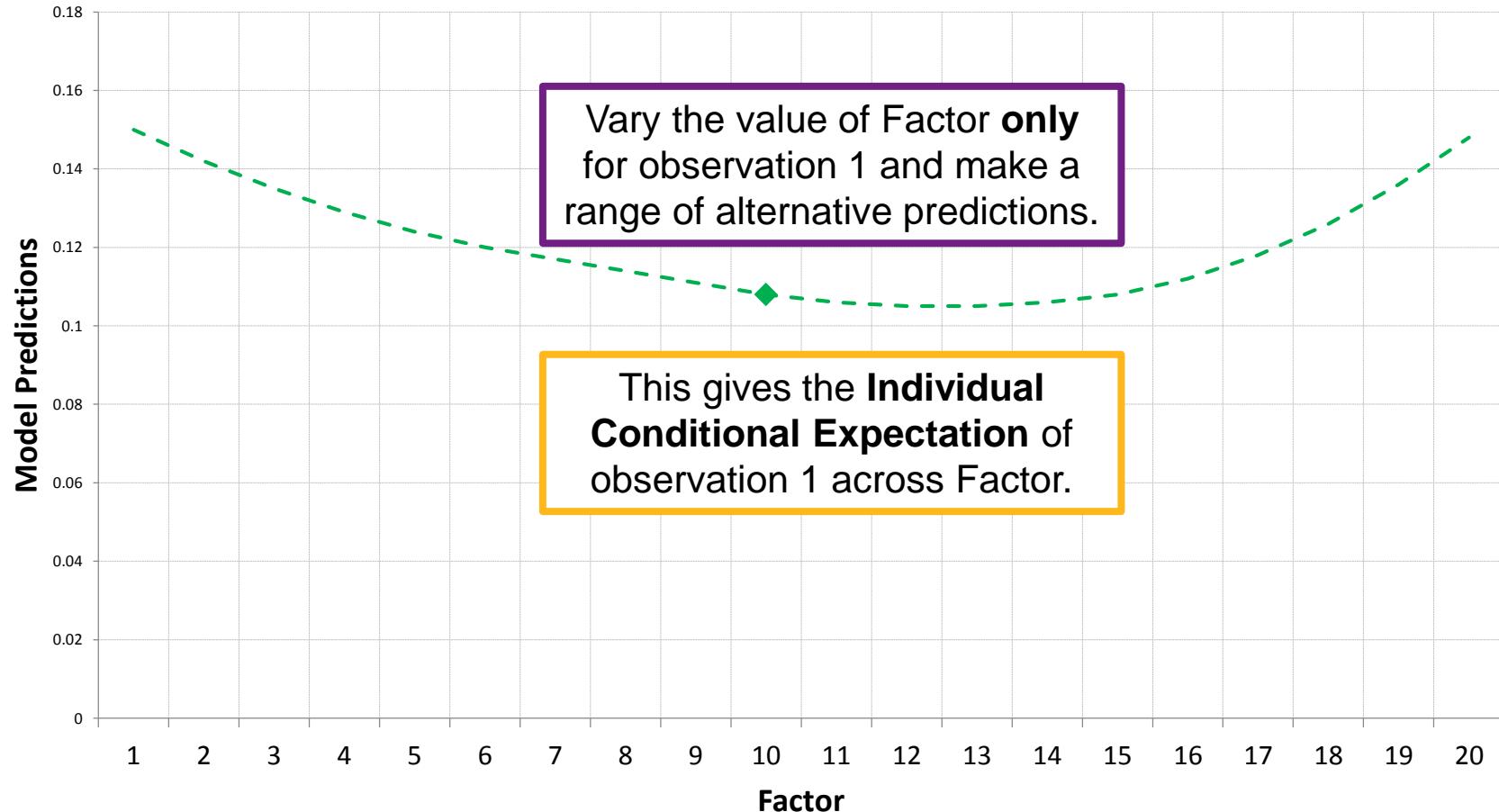
Partial dependency plots

Example



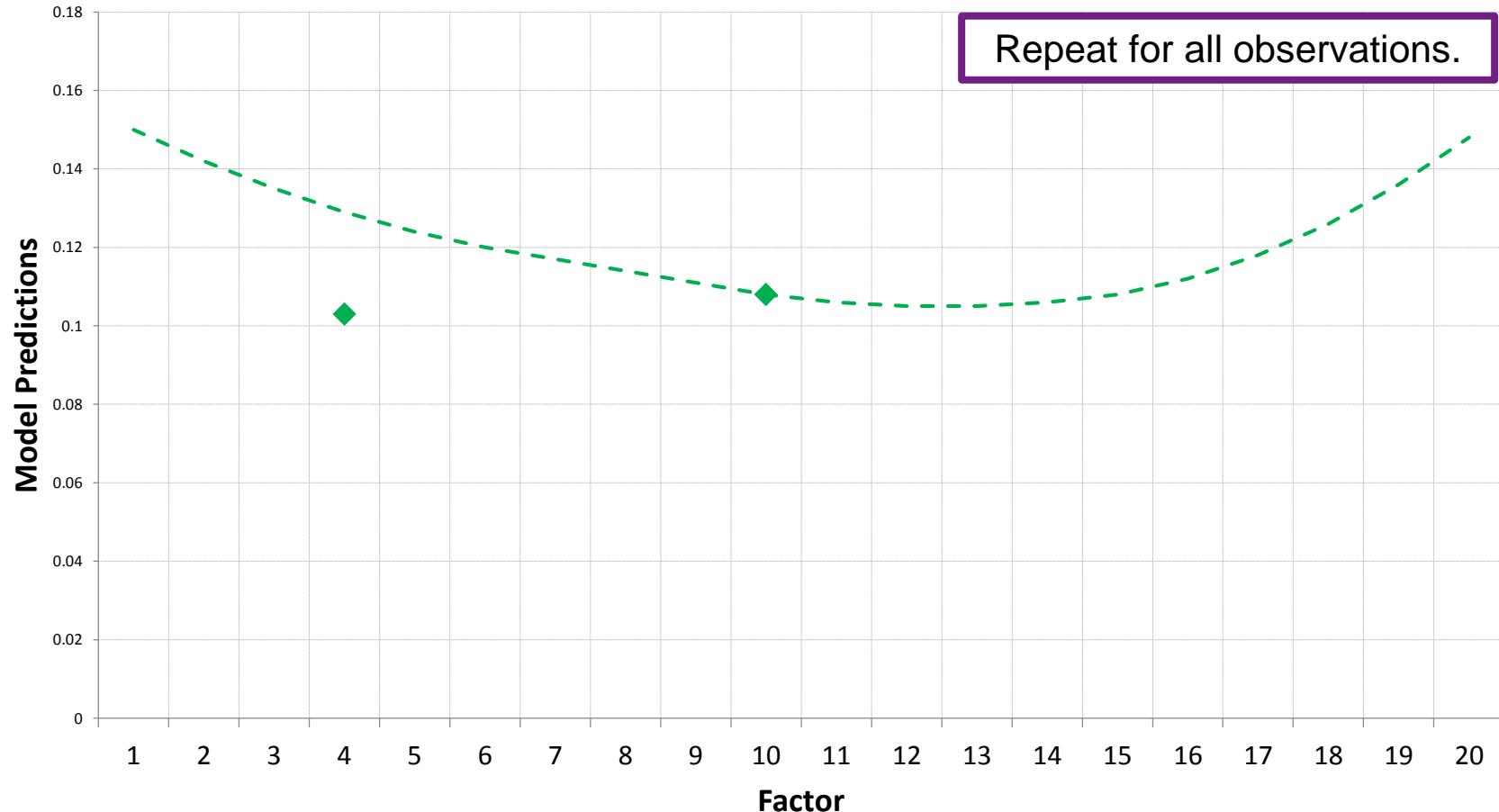
Partial dependency plots

Example



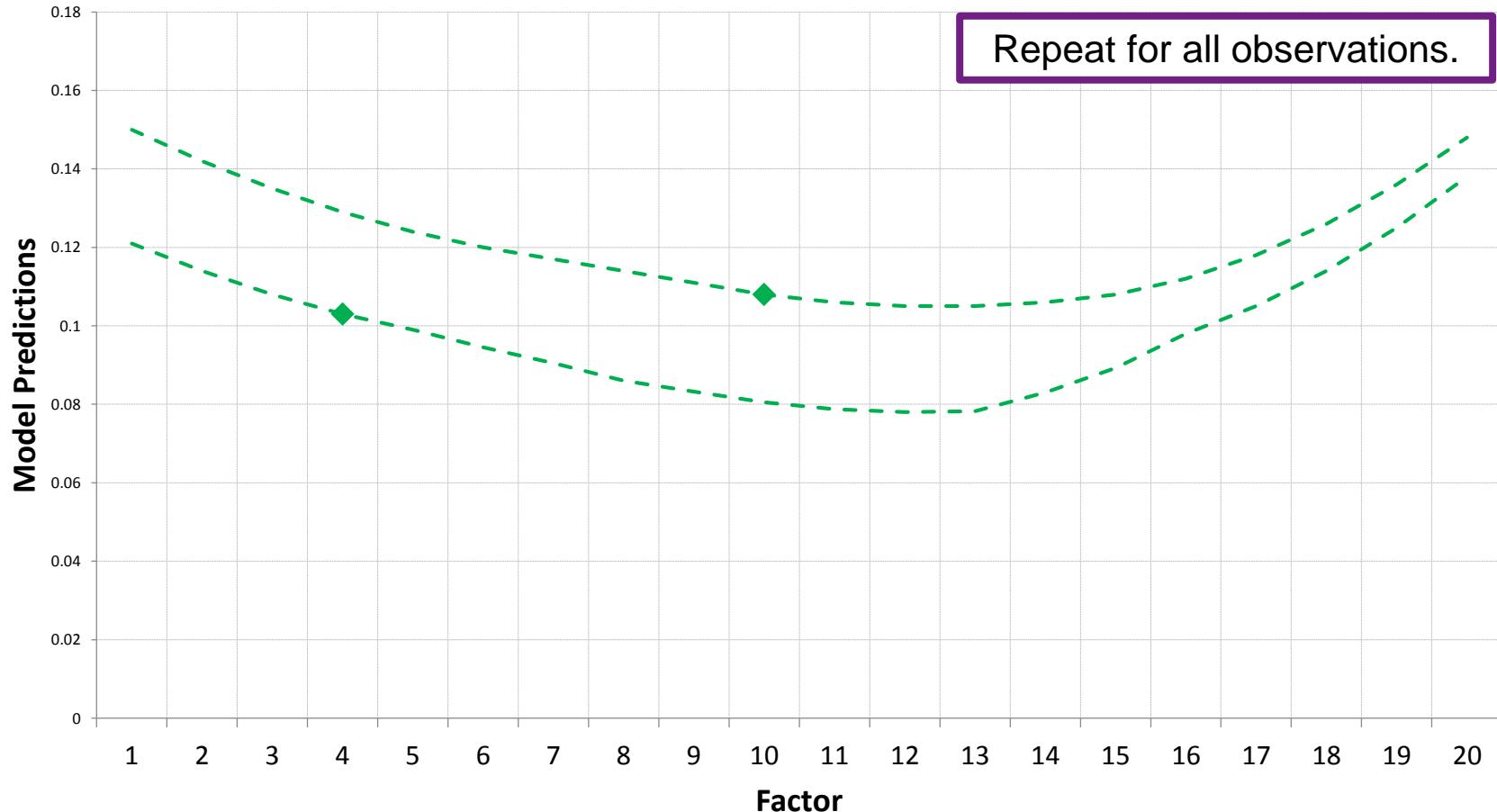
Partial dependency plots

Example



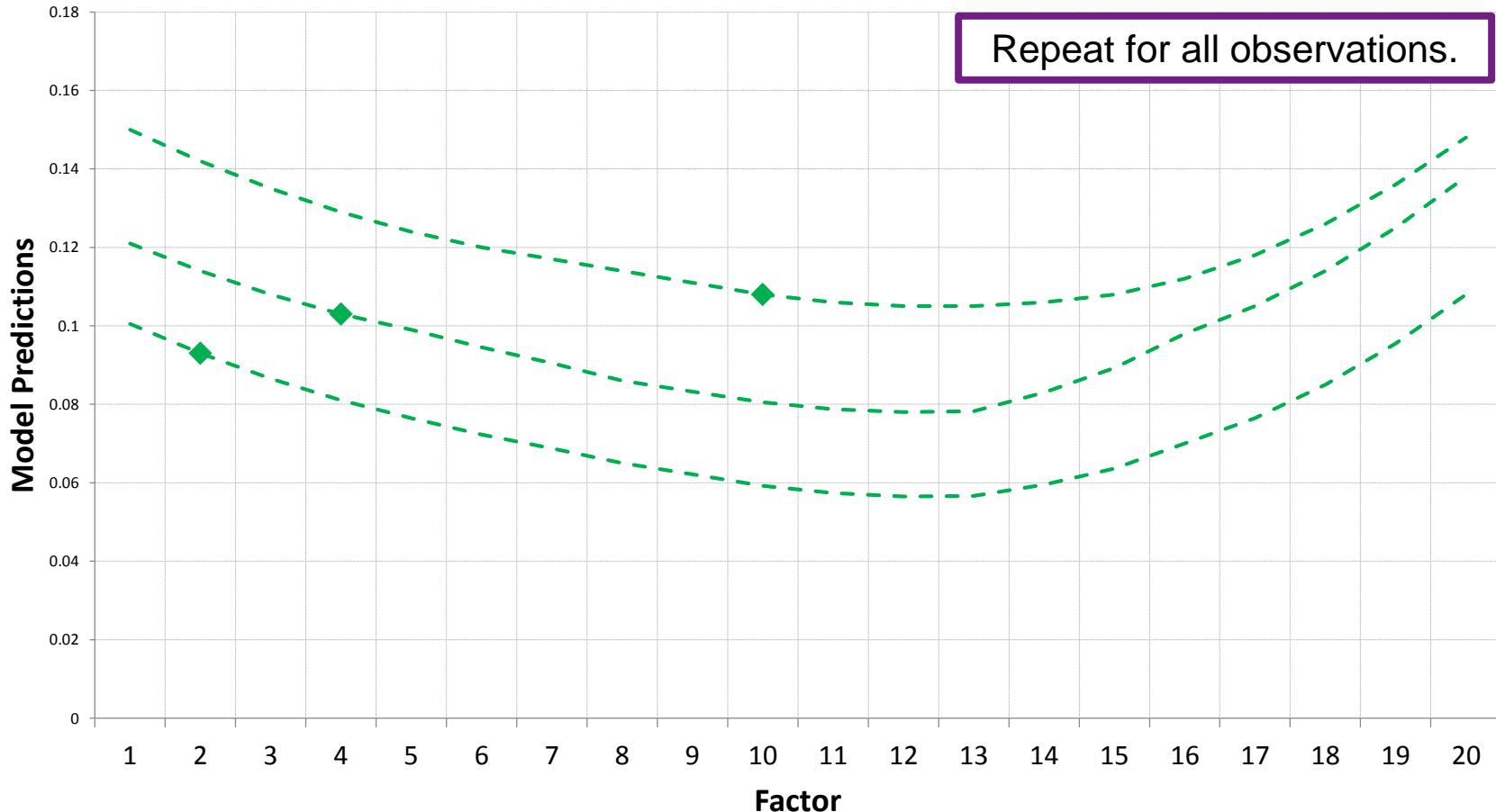
Partial dependency plots

Example



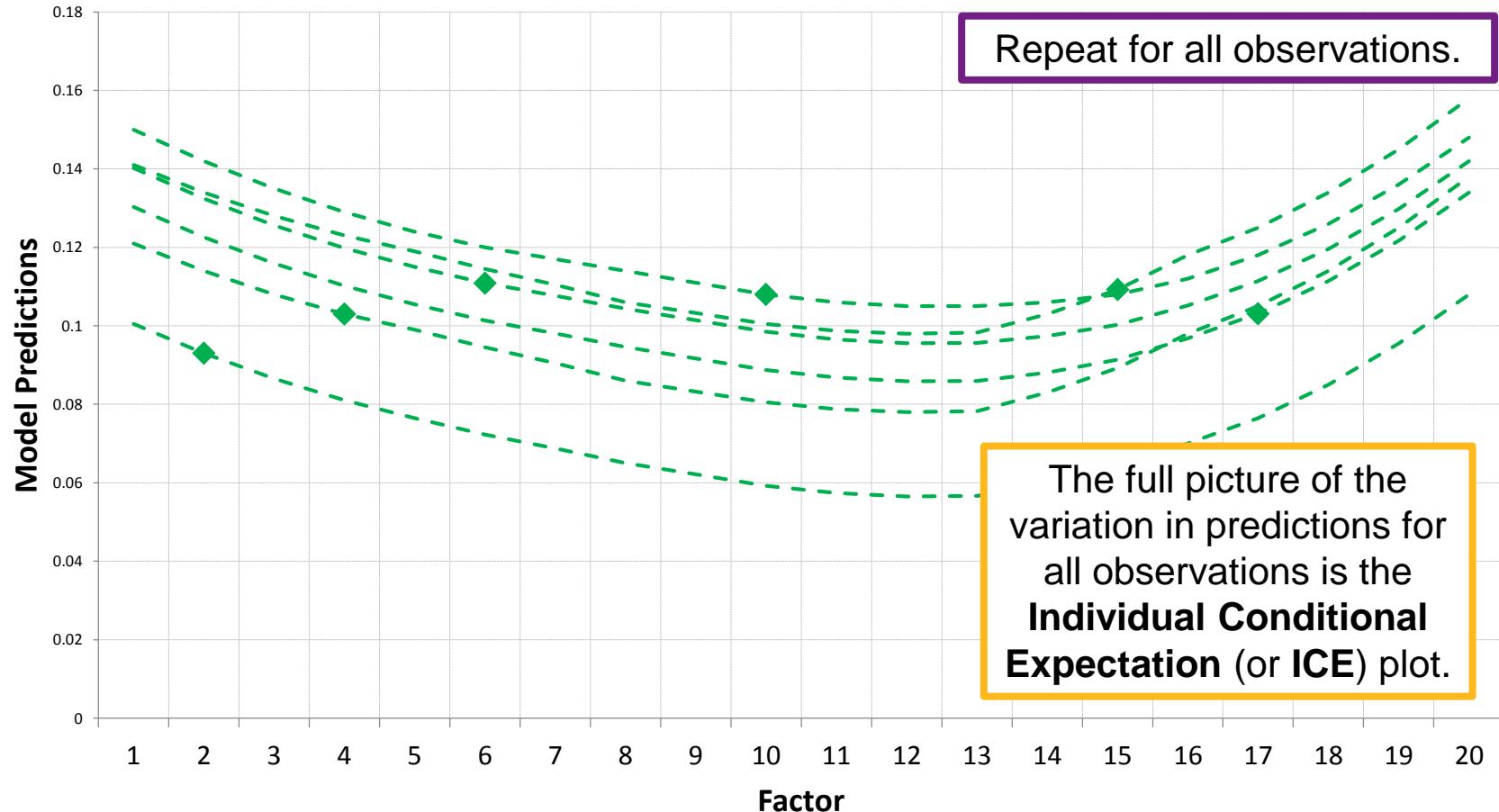
Partial dependency plots

Example



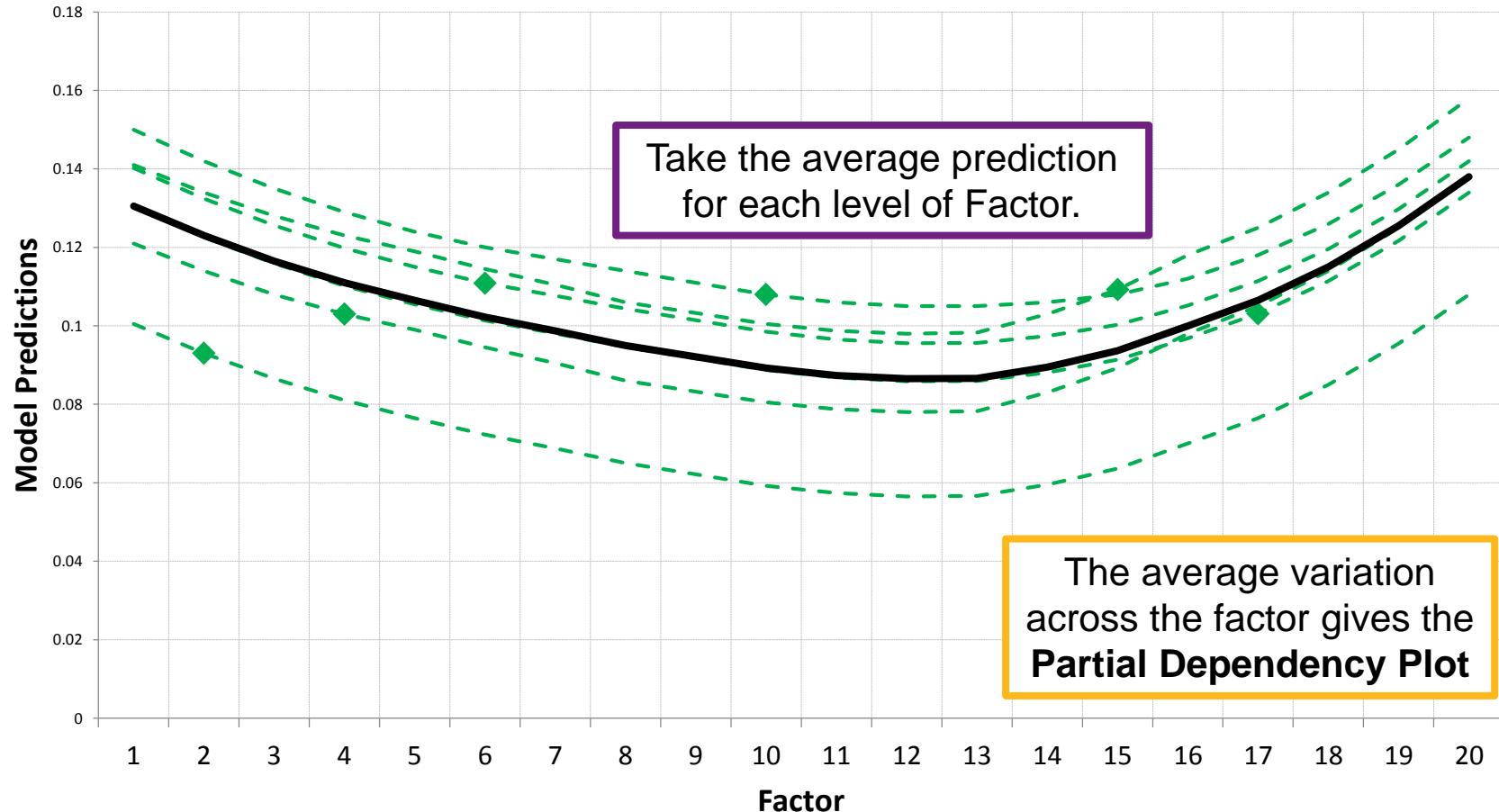
Partial dependency plots

Example



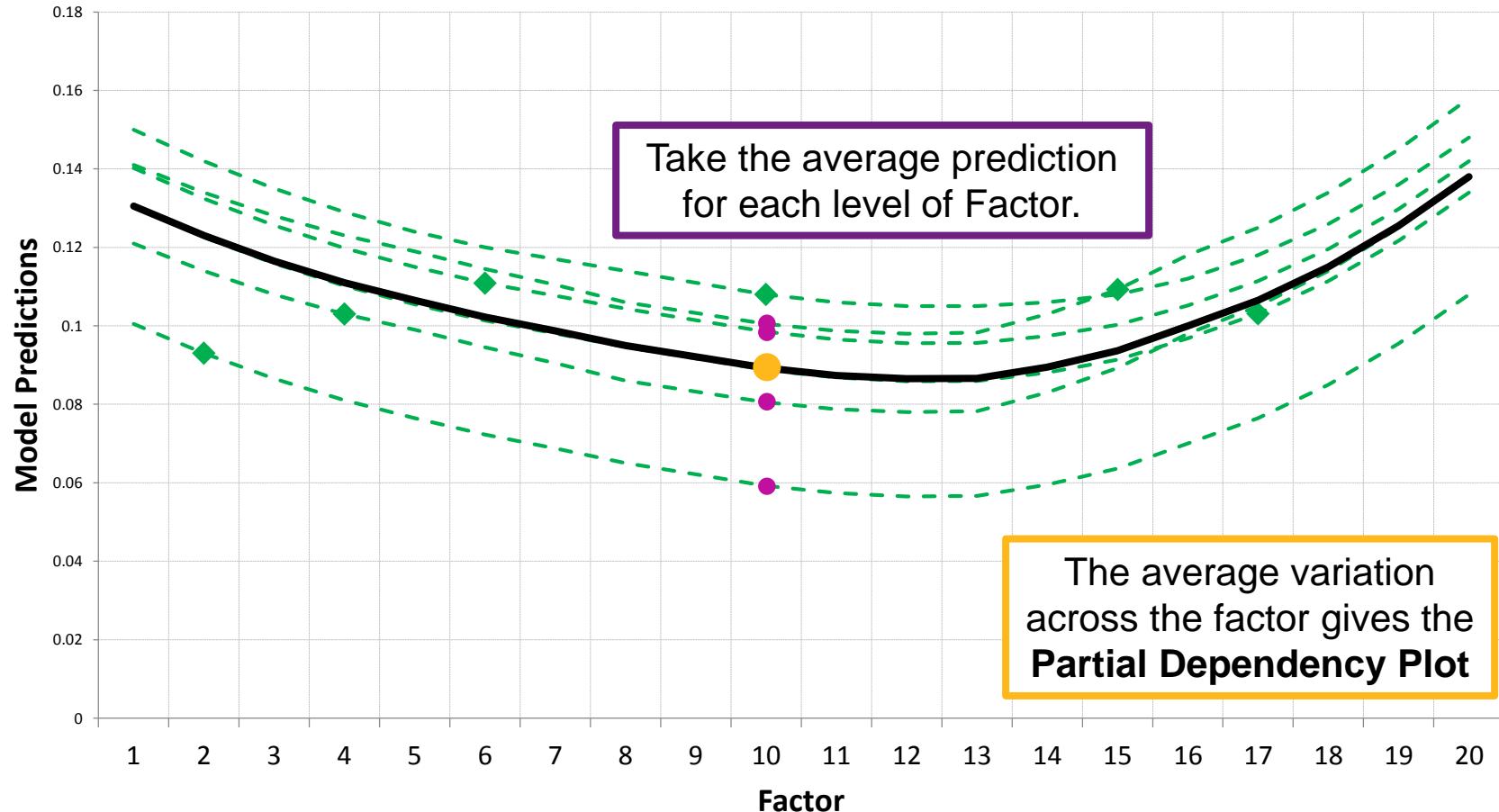
Partial dependency plots

Example

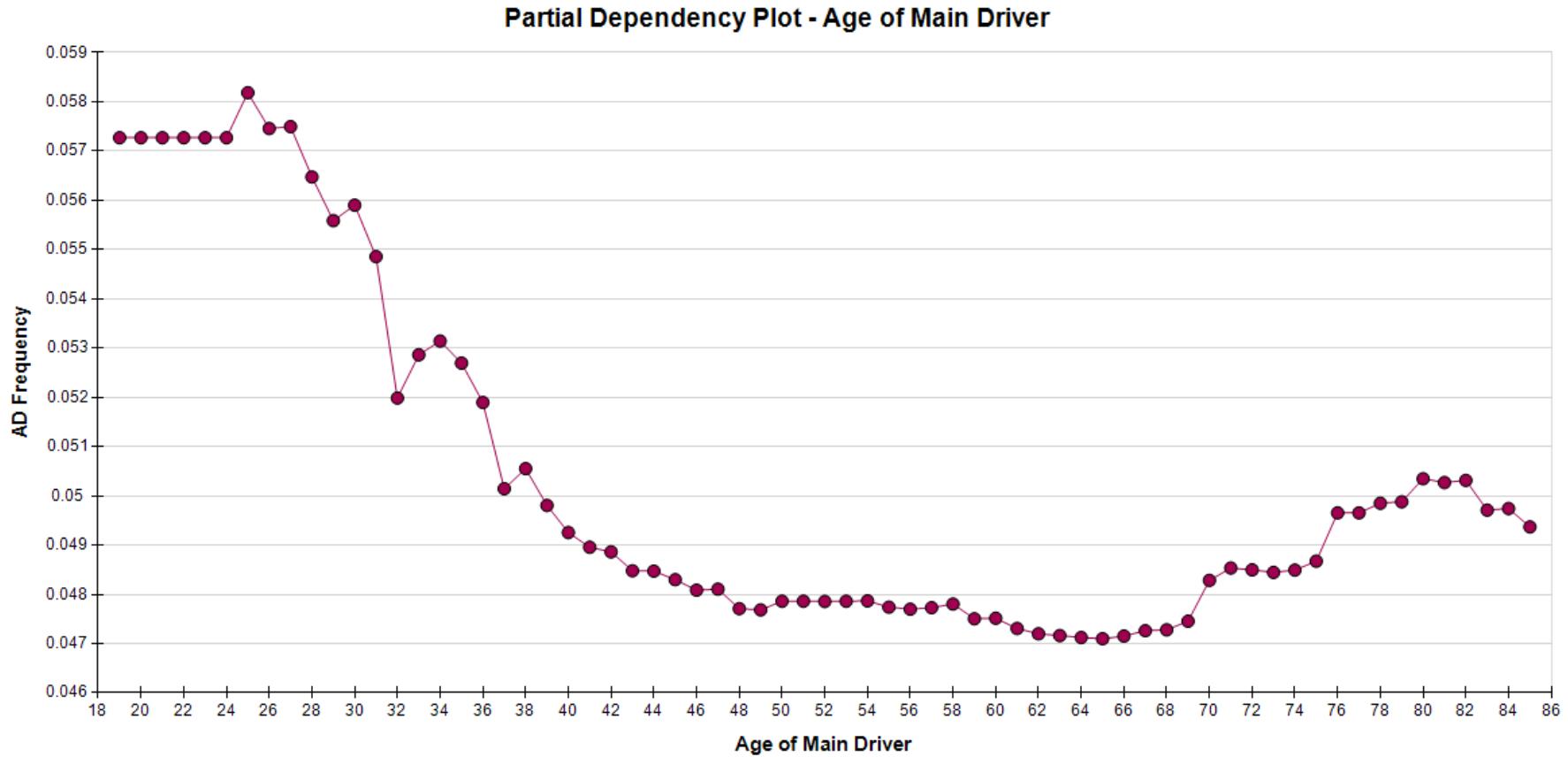


Partial dependency plots

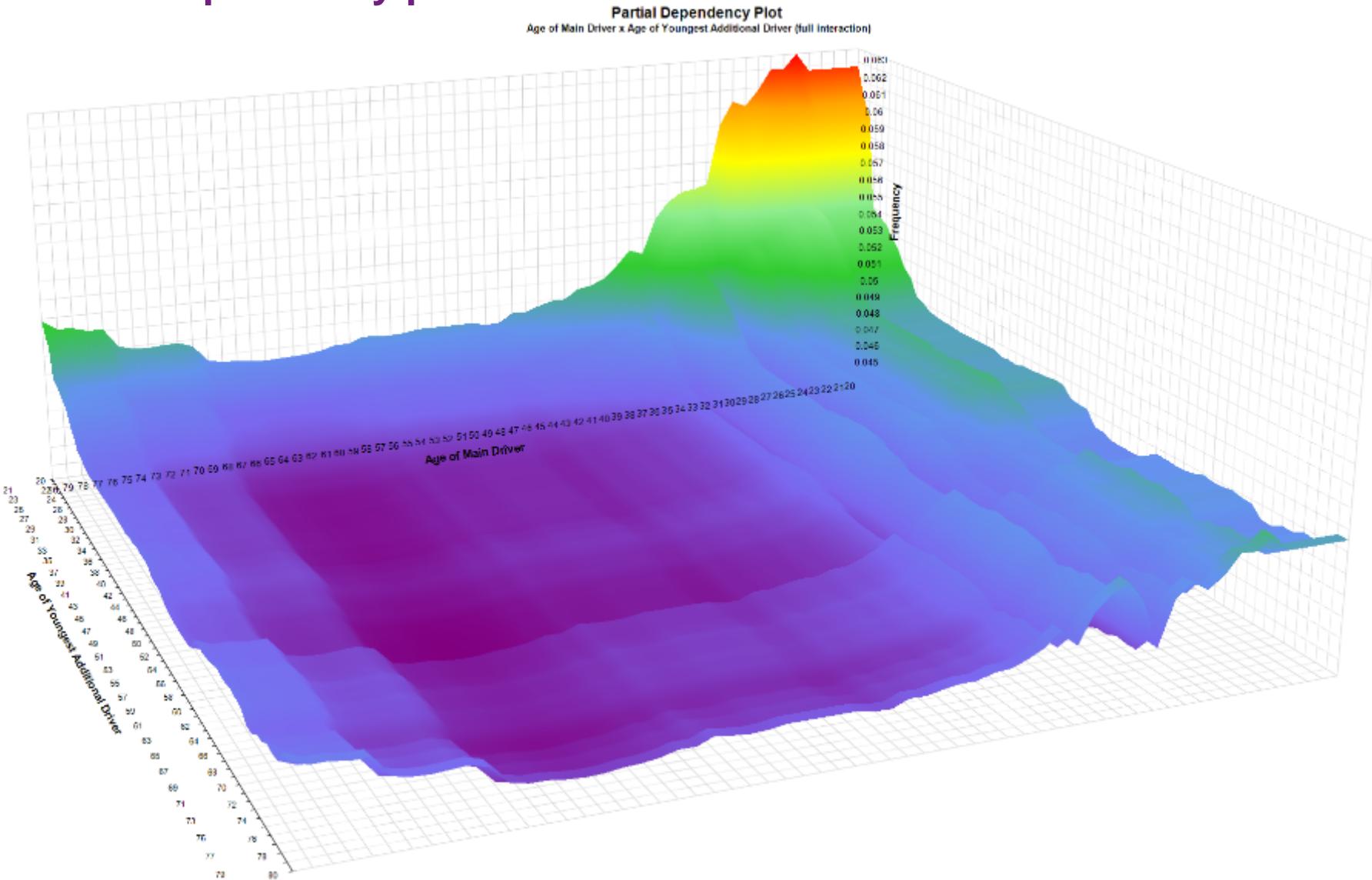
Example



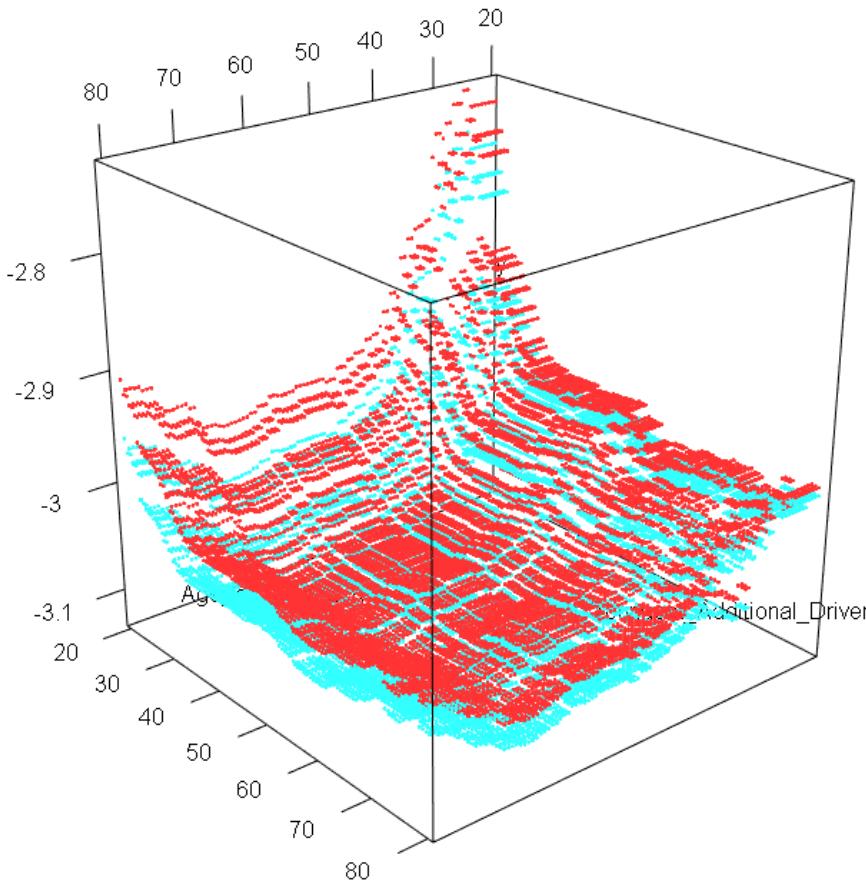
Partial dependency plots



Partial dependency plots



Partial dependency plots



Advantages

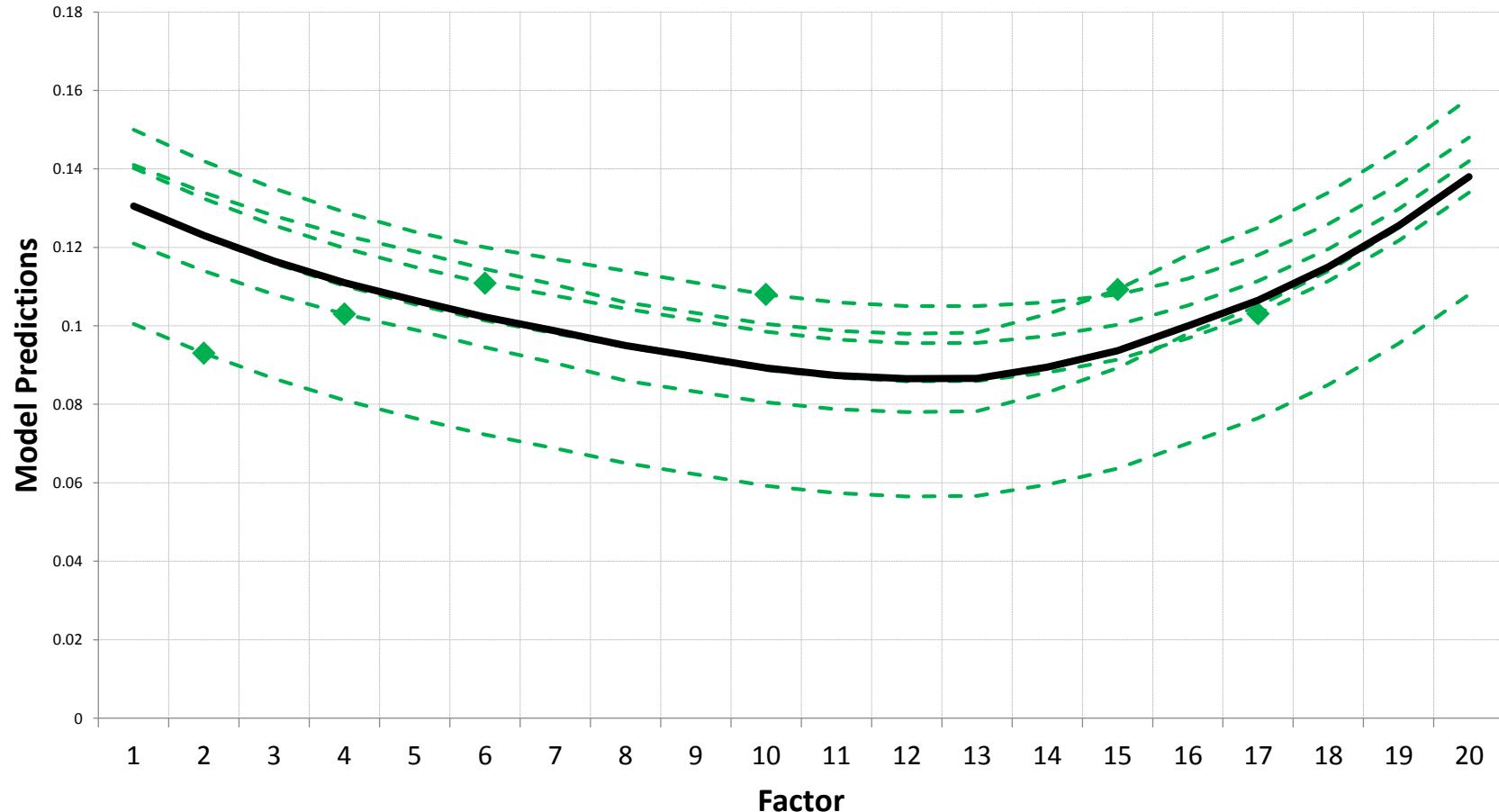
- Qualitative description of properties of relationships
- Most revealing of additive and multiplicative relationships

Disadvantages

- “GLM view of a non-GLM thing”
- Interaction effects outside of the chosen subset may be obfuscated
- eg if $X_1 X_2$ is important and X_2 is averaged out in the partial dependence plot, X_1 may show as being heterogeneous, thus obfuscating the complexity of the modelled relationships

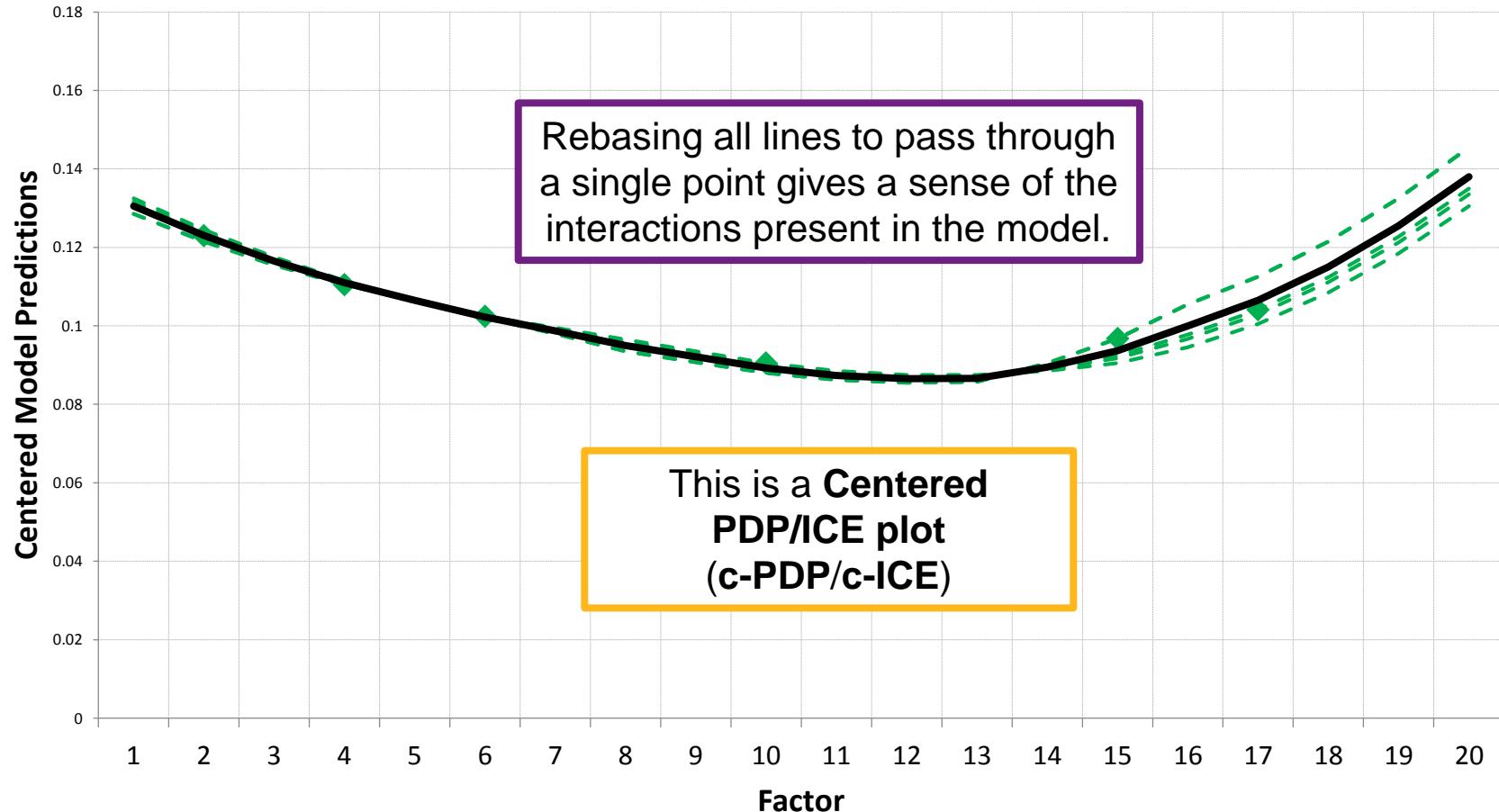
Partial dependency plots

Example



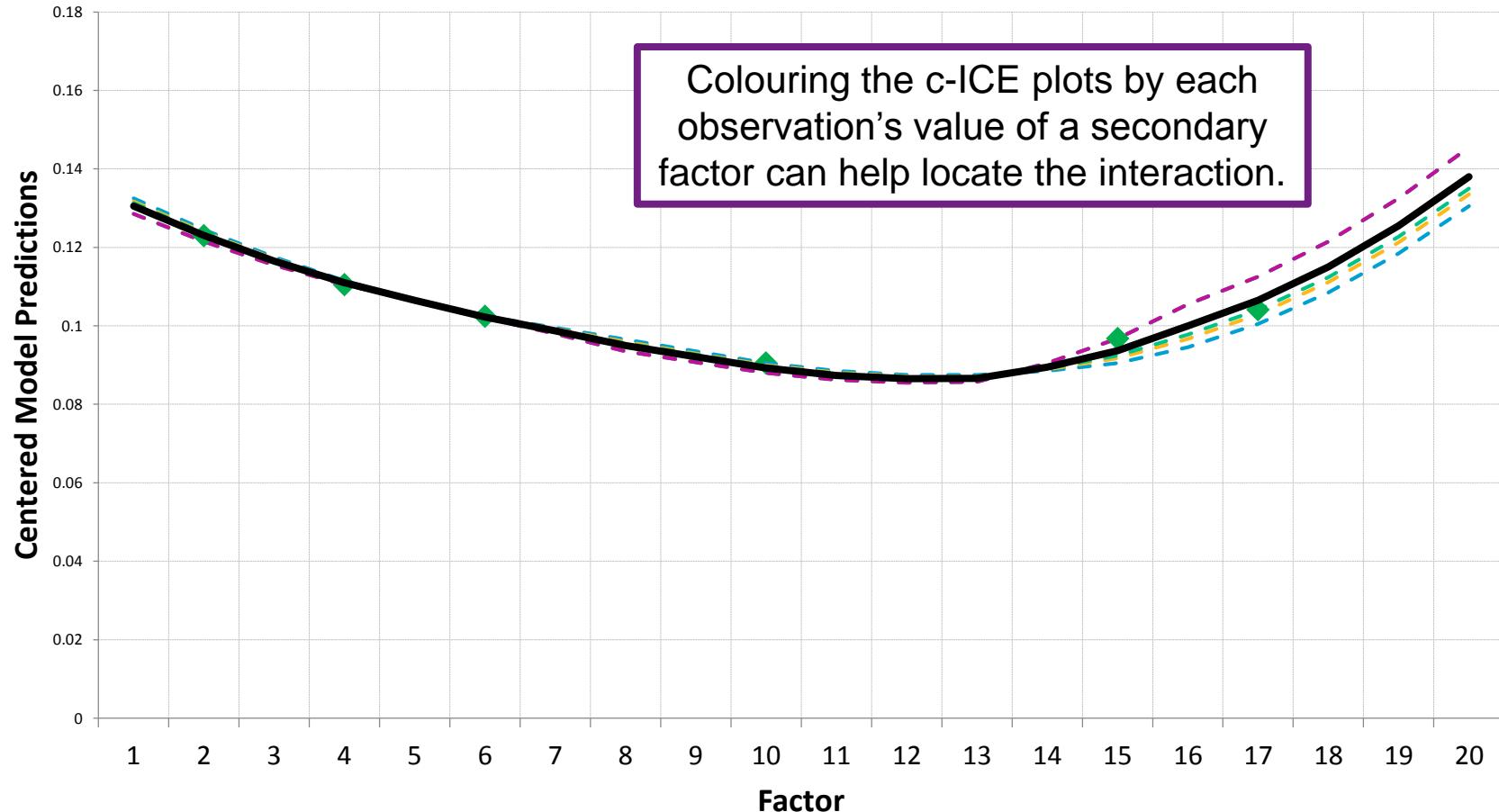
Partial dependency plots

Example

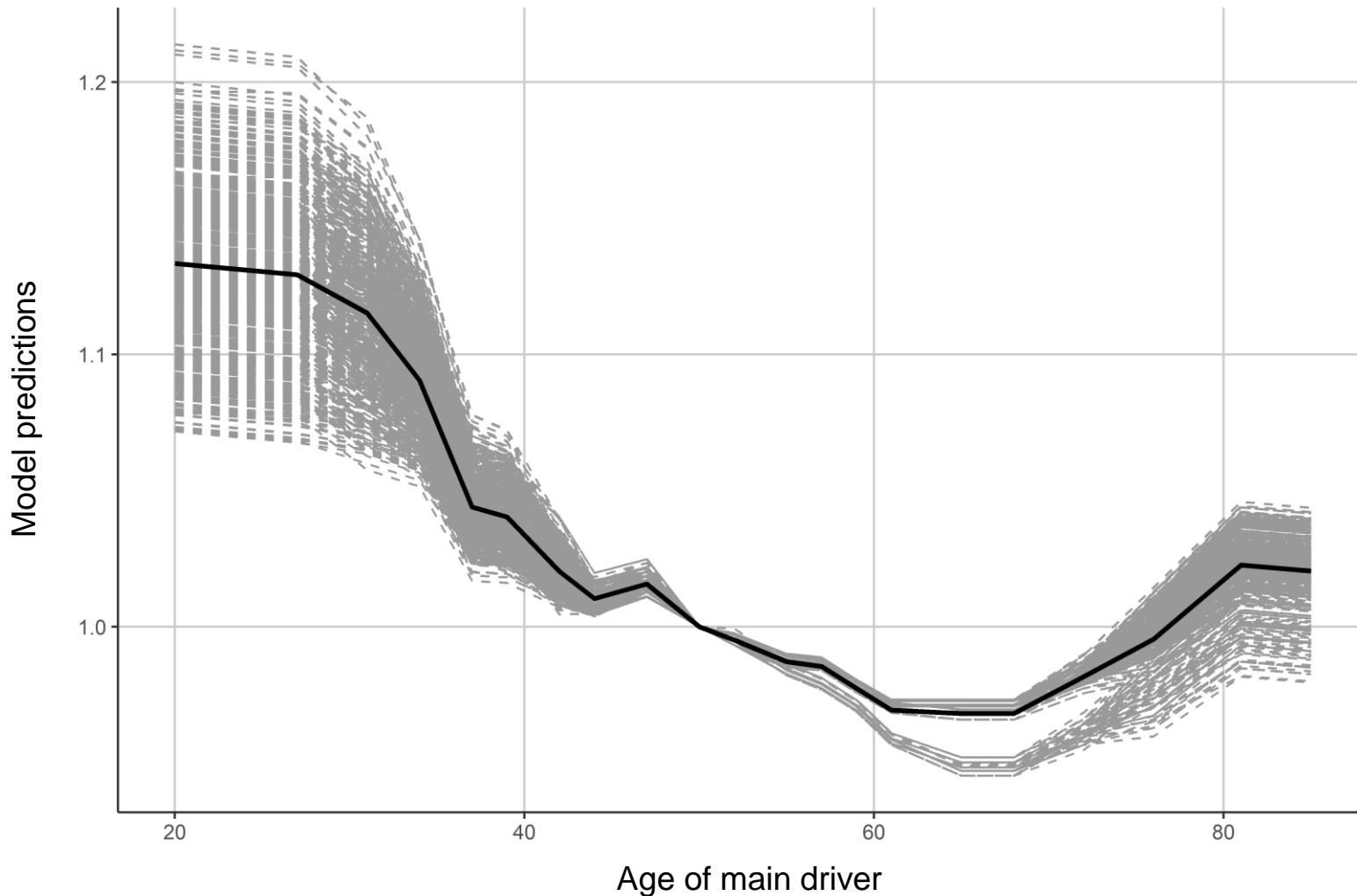


Partial dependency plots

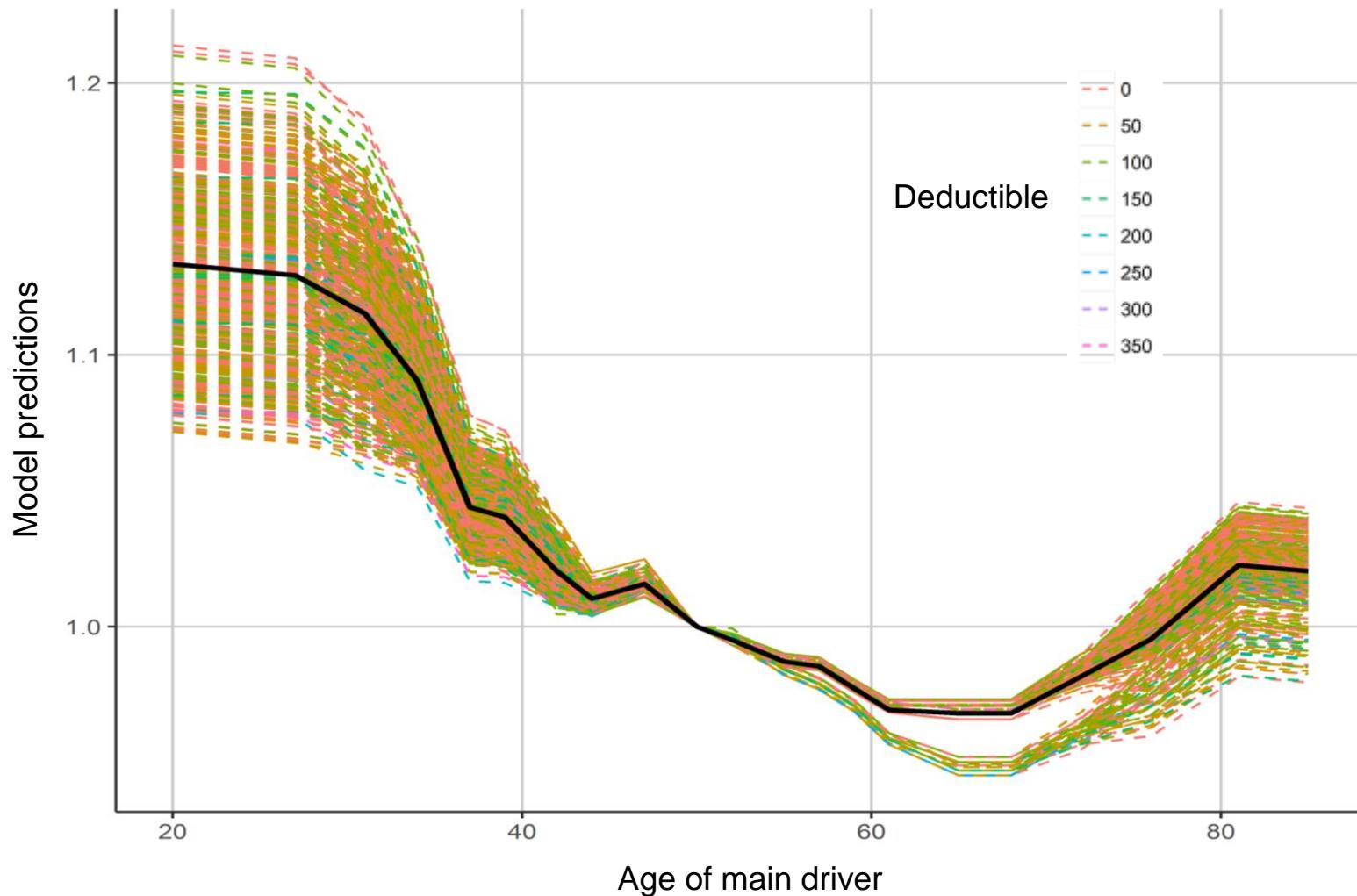
Example



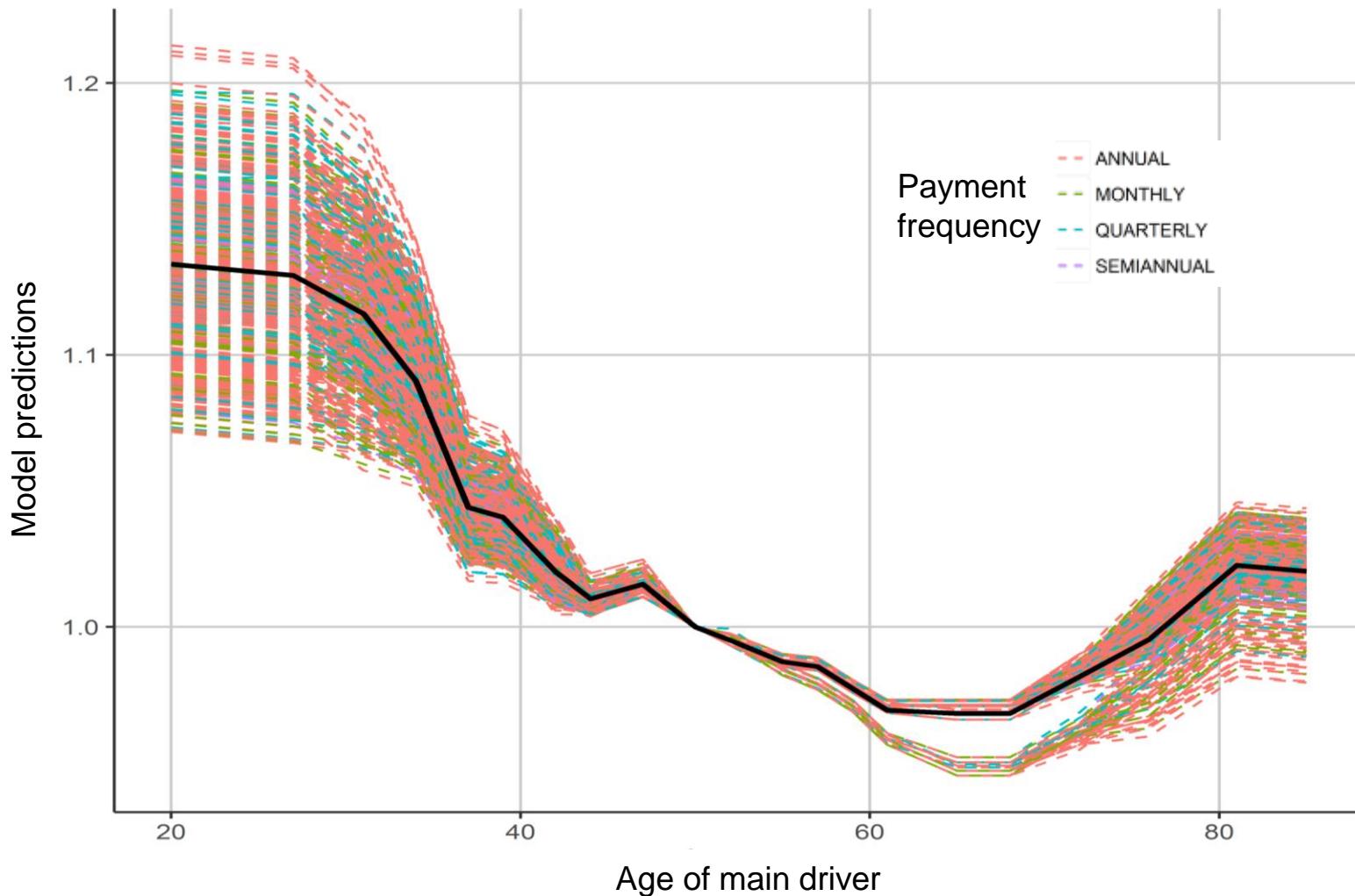
Partial dependency plot with individual conditional expectation plot



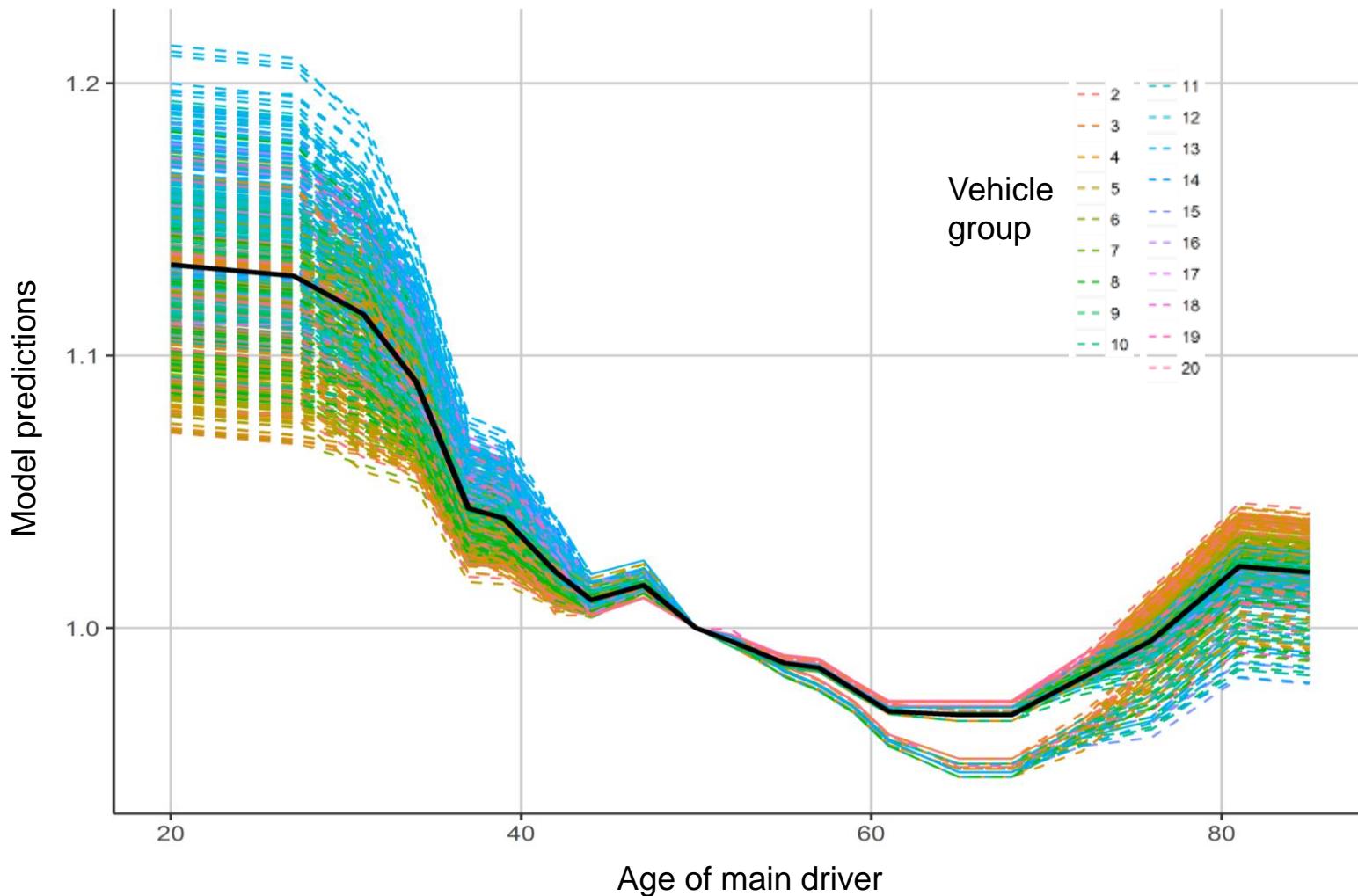
Partial dependency plot with individual conditional expectation plot



Partial dependency plot with individual conditional expectation plot



Partial dependency plot with individual conditional expectation plot



Three (and a half) interesting questions

1. Does the model add value?
2. What does the model mean?
 - Do we even need to know?
3. How can we use the model?

Model down into a GLM form

Use insights to guide GLM

Use non-GLM directly

Three (and a half) interesting questions

1. Does the model add value?
2. What does the model mean?

- Do we even need to know?

Model down into a GLM form

3. How can we use the model?

Use insights to guide GLM

Use non-GLM directly

How can we use the model?

Model down into a GLM form

Use insights to guide GLM

Use non-GLM directly

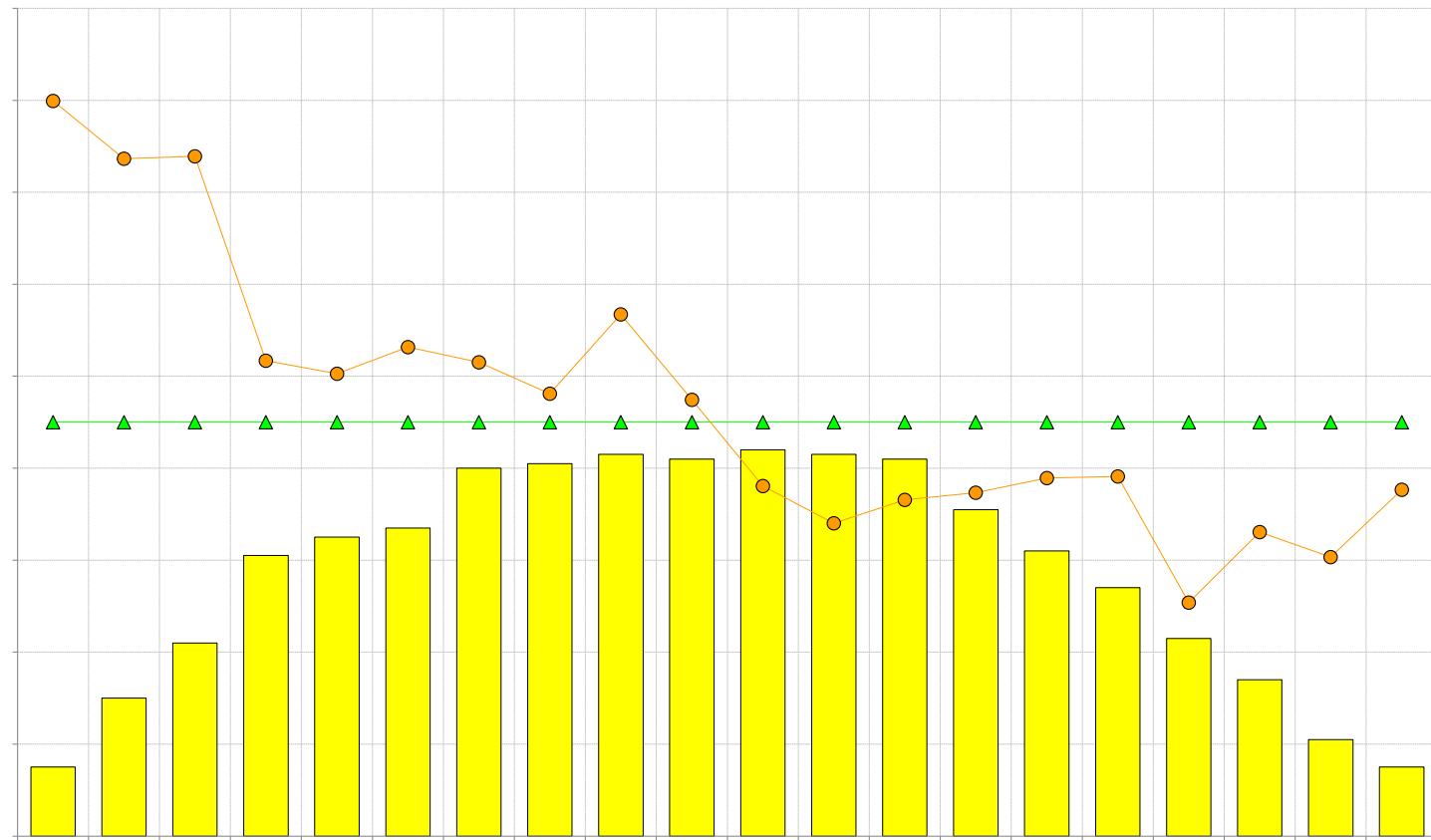
Model	Gini improvement	Gini rank	Loss ratio @ elasticity 6	Loss ratio rank	Loss ratio @ elasticity 2	Loss ratio rank	
GLM (main factor removed)	0.319	-2.4%	6	-0.8%	6	-0.3%	6
GLM (minor factor removed)	0.322	-1.3%	5	-0.3%	5	-0.2%	5
GLM	0.326	0.0%	4	0.0%	4	0.0%	4
GLM fitted to GBM	0.328	0.5%	3	0.9%	3	0.2%	3
GBM	0.332	1.8%	2	2.9%	1	0.6%	2
Ensemble of GBM & GLM	0.338	3.4%	1	2.8%	2	0.7%	1

How can we use the model?

Model down into a GLM form

Use insights to guide GLM

Use non-GLM directly

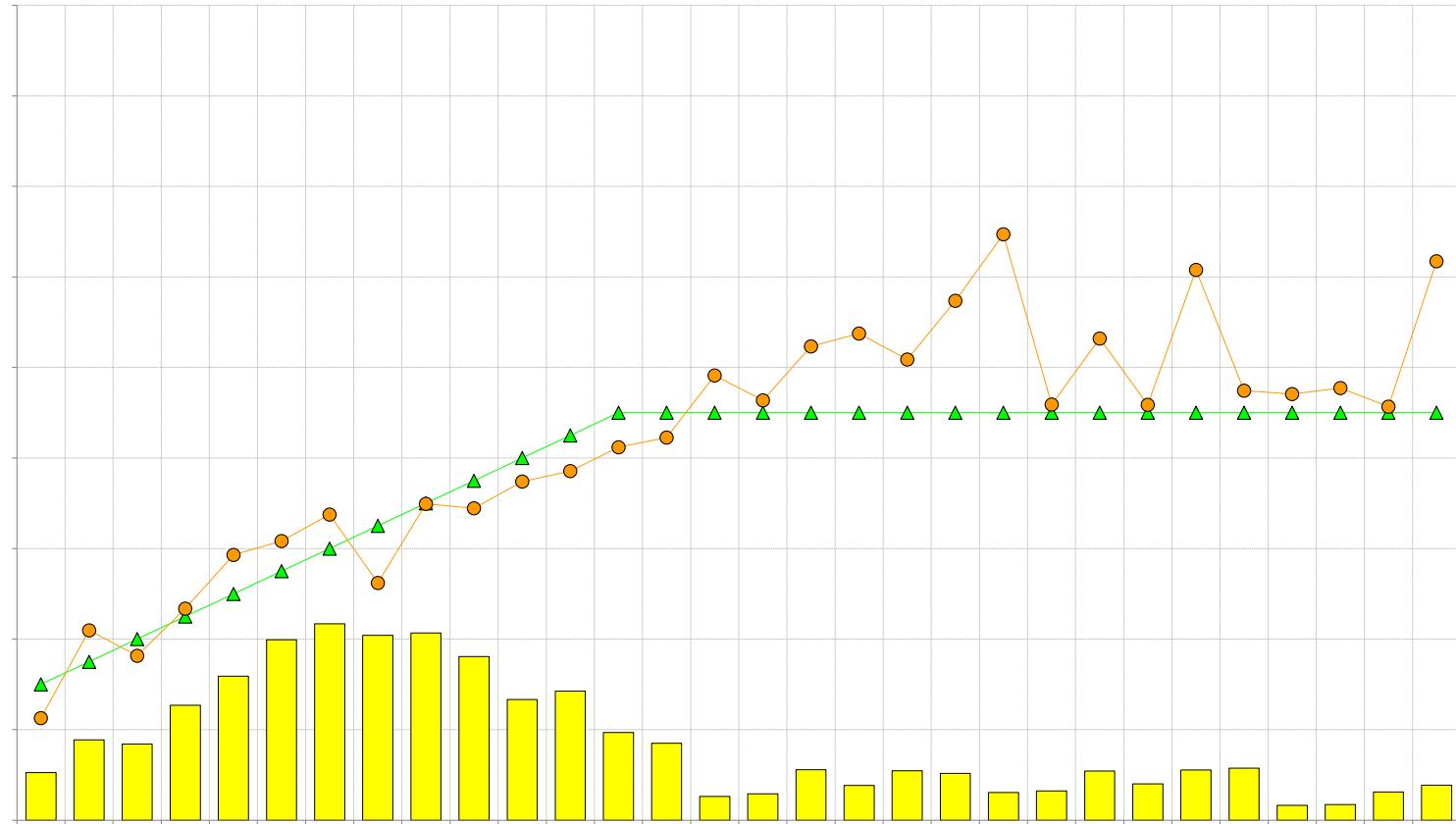


How can we use the model?

Model down into a GLM form

Use insights to guide GLM

Use non-GLM directly



How can we use the model?

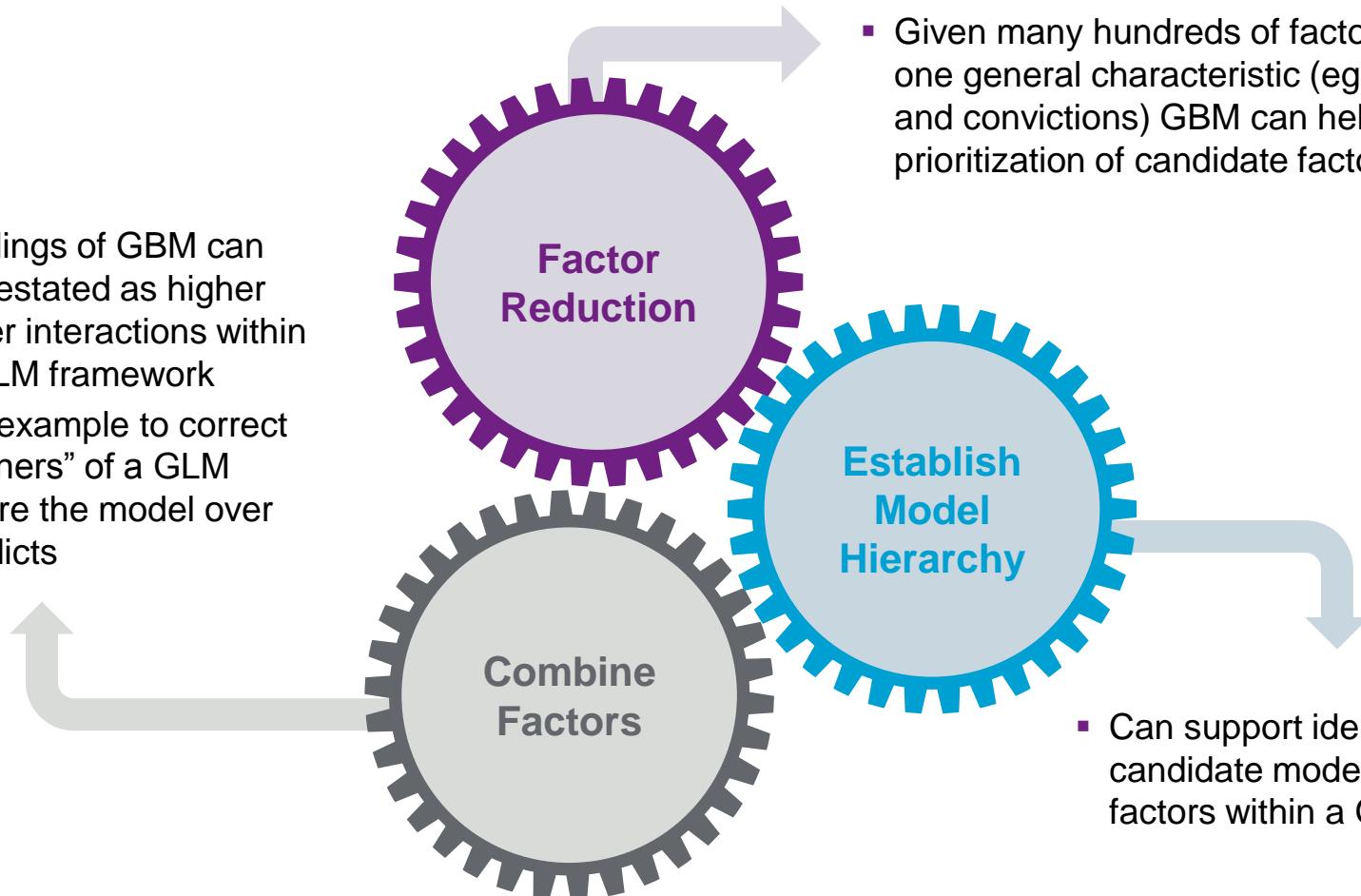
Model down into a GLM form

Use insights to guide GLM

Use non-GLM directly

- Findings of GBM can be restated as higher order interactions within a GLM framework
- For example to correct “corners” of a GLM where the model over predicts

- Given many hundreds of factors describing one general characteristic (eg past claims and convictions) GBM can help with prioritization of candidate factors



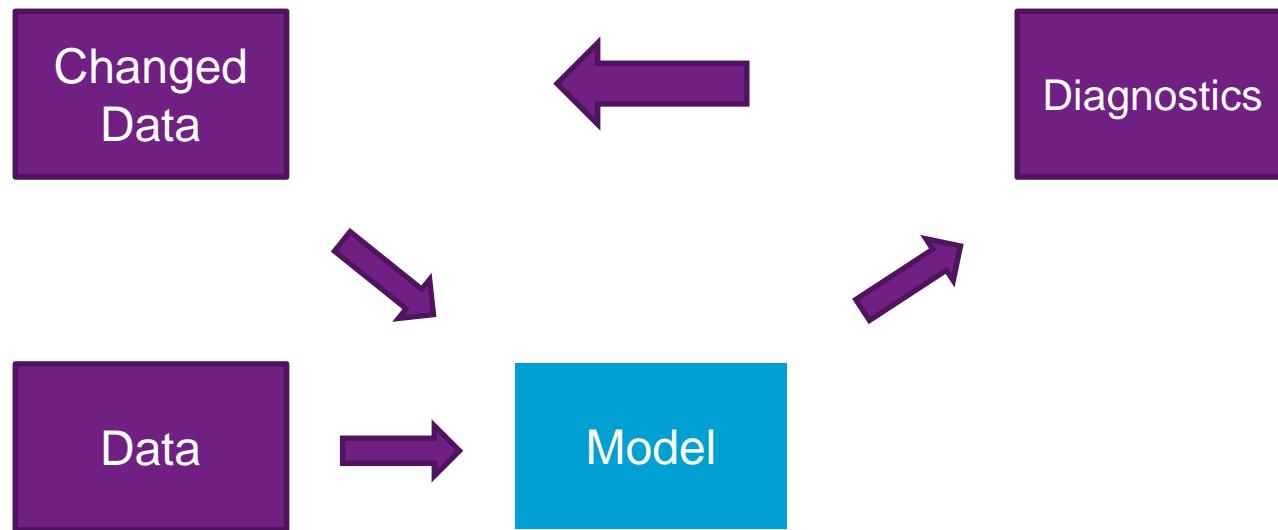
- Can support identification of candidate model segmentation factors within a GLM framework

How can we use the model?

Model down into a GLM form

Use insights to guide GLM

Use non-GLM directly



Three (and a half) interesting questions

1. Does the model add value?
2. What does the model mean?
 - Do we even need to know?
3. How can we use the model?

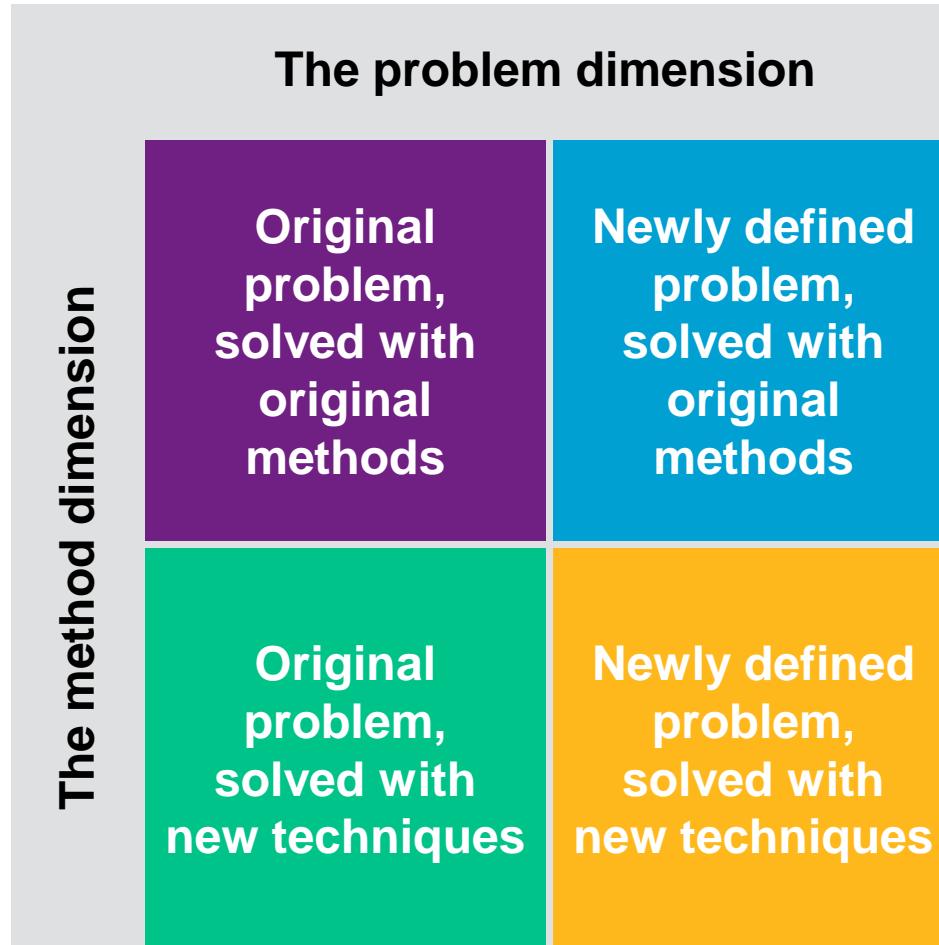
A fair playing field re
comprehensibility?

Automated parameterization

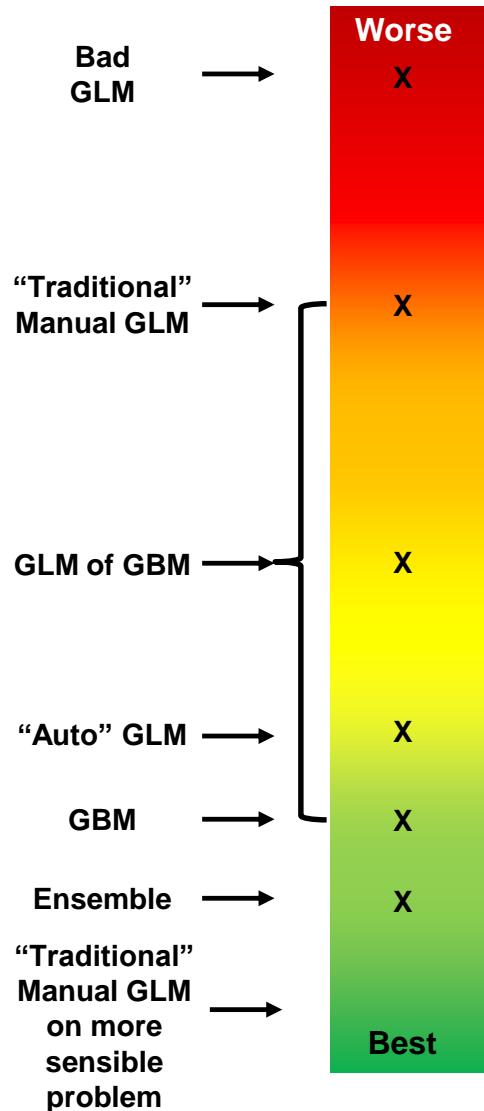
Model	Gini	Gini improvement	Gini rank	Loss ratio @ elasticity 6	Loss ratio rank	Loss ratio @ elasticity 2	Loss ratio rank
GLM (main factor removed)	0.319	-2.4%	7	-0.8%	7	-0.3%	7
GLM (minor factor removed)	0.322	-1.3%	6	-0.3%	6	-0.2%	6
GLM	0.326	0.0%	5	0.0%	5	0.0%	5
GLM fitted to GBM	0.328	0.5%	4	0.9%	4	0.2%	4
GLM with "Auto Saddles"	0.329	0.7%	3	1.0%	3	0.5%	3
GBM	0.332	1.8%	2	2.9%	1	0.6%	2
Ensemble of GBM & GLM	0.338	3.4%	1	2.8%	2	0.7%	1

A simple 2 x 2

The full picture



Conclusions



- If you can...
 - Cope with not seeing the model and instead using broad diagnostics
 - And cope with small segments being wrong
 - And your regulator can as well
 - And you have a rating engine that can implement it
 - And you have the software and hardware to fit to large datasets
- ...then there are predictive lift benefits from GBMs et al in pricing
 - In other areas, eg marketing, application is less problematic
- If not, there are ways of finding new insight, implementing within GLMs
- But also if you accept models that are hard to interpret, GLMs can be machine fitted also...
- Perhaps most important don't lose sight of the value of thinking and domain expertise...

Southwest Actuarial Forum

Exploring Advanced Analytics Solutions in Pricing

December 2016

